2022年東京大 (理系)最初の一問!! - 質問解決D.B.(データベース)

2022年東京大 (理系)最初の一問!!

問題文全文(内容文):
$f(x)=(cosx)log(cosx) -cosx + \int_0^x(cost)log(cost)dt$
f(x)は区間$0<x< \frac{π}{2}$において最小値を持つことを示し、その最小値を求めよ。

2022東京大学理系問題文改め
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$f(x)=(cosx)log(cosx) -cosx + \int_0^x(cost)log(cost)dt$
f(x)は区間$0<x< \frac{π}{2}$において最小値を持つことを示し、その最小値を求めよ。

2022東京大学理系問題文改め
投稿日:2022.03.04

<関連動画>

中学生でも解ける大学入試問題!【早稲田大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x$の二次関数$y=ax^2+bx+c$のグラフが相違なる3点$(a,b),(b,c),(c,a)$を通るものとする。
ただし,$abc≠0$とする。このとき,次の問いに答えよ。

(1)$a$の値を求めよ。

(2)$b,c$の値を求めよ。

早稲田大過去問
この動画を見る 

【数Ⅰ】図形と計量: 0°≦x≦180°のとき、関数y=sin²x+cosx+1の最大値、最小値を求めましょう。

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
教材: #高校リード問題集#高校リード問題集数Ⅰ#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$0°≦x≦180°$のとき、関数$y=sin²x+cosx+1$の最大値、最小値を求めよ。
この動画を見る 

福田のわかった数学〜高校1年生056〜図形の計量(7)等面四面体の体積

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 図形の計量(7)\\
4つの面のどれも3辺の長さが\\
5,6,7の三角形である四面体\\
(等面四面体)の体積を求めよ。
\end{eqnarray}
この動画を見る 

【数学Ⅰ/三角比】正弦定理の使い方

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$\triangle ABC$において、$a=2\sqrt{ 2 },b=2,A=45^{ \circ }$のとき、$B$および外接円の半径$R$を求めよ。
この動画を見る 

平方根の方程式

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
方程式を解け.$x$は正の実数である.

$x+\sqrt{x(x+1)}+\sqrt{x(x+2)}+$
$\sqrt{(x+1)(x+2)}=2$
この動画を見る 
PAGE TOP