三次関数の基本性質 変曲点について点対称 畳8畳 - 質問解決D.B.(データベース)

三次関数の基本性質 変曲点について点対称 畳8畳

問題文全文(内容文):
$a \gt 0$
$f(x)=x^3-6ax^2+9a^2x+b$
$0 \leqq x \leqq 1$における最大値が$\displaystyle \frac{1}{2},$最小値が$0$となる
$a,b$の値を求めよ

出典:徳島文理大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#数学(高校生)#徳島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \gt 0$
$f(x)=x^3-6ax^2+9a^2x+b$
$0 \leqq x \leqq 1$における最大値が$\displaystyle \frac{1}{2},$最小値が$0$となる
$a,b$の値を求めよ

出典:徳島文理大学 過去問
投稿日:2019.08.15

<関連動画>

福田のわかった数学〜高校2年生012〜高次方程式の作成

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 高次方程式
$\alpha=\sqrt{13}+\sqrt{9+2\sqrt{17}}+$$\sqrt{9-2\sqrt{17}}$
を解にもつ整数係数であり$x^4$の係数1の
4次方程式を作れ。また、残りの解を求めよ。
この動画を見る 

高専数学 微積II #51(3)(4) 合成関数の微分法

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$z=f(x,y)$:全微分可能
$\dfrac{dz}{dt}$を$t,\dfrac{\alpha z}{\alpha x},\dfrac{\alpha z}{\alpha y}$で表せ.

(3)$x=\sin t+\cos t$
$y=\sin t \cos t$
(4)$x=\dfrac{1}{\sqrt{x+1}}$
$y=\sqrt{t+1}$
この動画を見る 

兵庫県教員採用試験(数学:練習問題 解の個数)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$a\gt 0$とする.
$x^a=a^x$を満たす正の解の
個数を調べよ.
この動画を見る 

どっちがでかい?

アイキャッチ画像
単元: #指数関数
指導講師: 鈴木貫太郎
問題文全文(内容文):
どっちがでかい?
$50^{50}$ VS $49^{51}$
*e < 3
この動画を見る 

半角の公式を導く!!(数II)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
半角の公式の証明について説明動画です
この動画を見る 
PAGE TOP