京都大 三次関数 積分 - 質問解決D.B.(データベース)

京都大 三次関数 積分

問題文全文(内容文):
$f(x)=x^3-6x^2+8$

$0 \leqq x \leqq r$における$|f(x)|$の最大値を$M(r)$とする。

$\displaystyle \int_{0}^{5} M(r) dr$を求めよ

出典:1966年京都大学 過去問
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-6x^2+8$

$0 \leqq x \leqq r$における$|f(x)|$の最大値を$M(r)$とする。

$\displaystyle \int_{0}^{5} M(r) dr$を求めよ

出典:1966年京都大学 過去問
投稿日:2019.09.05

<関連動画>

大学入試問題#582「ガチンコでぶつかると危険」 東京帝国大学(1946) 不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{dx}{x-\sqrt{ x^2-1 }}$

出典:1946年東京帝国大学 入試問題
この動画を見る 

整数+3乗根の展開 山梨大

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2017年 山梨大学 過去問

$n$ 自然数
${(1+\sqrt[3]{2})}^x$は整数$a_n$,$b_n$,$c_n$を用いて
$a_n+b_n\sqrt[3]{2}+\frac{c_n}{\sqrt[3]{2}}$で表せることを証明
この動画を見る 

大学入試問題#477「もうすこし工夫できそう」 山形大学(2016) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数Ⅲ#大阪市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{1}{e}}^{1} (1+\displaystyle \frac{1}{x})log\ x\ dx$

出典:2016年山形大学 入試問題
この動画を見る 

滋賀大 積分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#学校別大学入試過去問解説(数学)#平面図形#角度と面積#数学(高校生)#数Ⅲ#滋賀大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'93滋賀大学過去問題
$y=\frac{1}{2}x^2$上に2点P,Q
線分PQは長さが2となるように動く、PQの中点のx座標をm
線分PQと放物線で囲まれる面積をmで表せ
この動画を見る 

大学入試問題#307 産業医科大学(2013) #定積分 #King property

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#産業医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}}\displaystyle \frac{\cos\theta}{2\cos^2(\theta-\displaystyle \frac{\pi}{4})}d\theta$

出典:2013年産業医科大学 入試問題
この動画を見る 
PAGE TOP