愛媛大 式の計算 - 質問解決D.B.(データベース)

愛媛大 式の計算

問題文全文(内容文):
$(\displaystyle \frac{1+\sqrt{ 5 }}{2})^3$の小数部分を$a$
$a^4+5a^3+4a^2+4a$の値を求めよ

出典:2015年愛媛大学 過去問
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#愛媛大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(\displaystyle \frac{1+\sqrt{ 5 }}{2})^3$の小数部分を$a$
$a^4+5a^3+4a^2+4a$の値を求めよ

出典:2015年愛媛大学 過去問
投稿日:2019.09.08

<関連動画>

岩手大 微分 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
岩手大学過去問題
$f(x)=-x^4+a(x-2)^2 \quad (a>0)$
(1)f(x)が極小値をもつためのaの範囲
(2)f(x)が極小値を持つとき、その極小値を与えるxの値をtとする。2<t<3を示せ。
(3)(2)のとき、f(t)>-27を示せ。
この動画を見る 

福田の数学〜名古屋大学2022年理系第1問〜割り算の余りと異なる実数解の個数

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ a,bを実数とする。                          \\
(1)整式x^3を2次式(x-a)^2で割った時の余りを求めよ。         \ \ \\
(2)実数を係数とする2次式f(x)=x^2+\alpha x+\betaで整式x^3を割った時の余りが\\
3x+bとする。bの値に応じて、このようなf(x)が何個あるかを求めよ。
\end{eqnarray}

2022名古屋大学理系過去問
この動画を見る 

東大 整数問題 Mathematics Japanese university entrance exam Tokyo University

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y,z$は自然数

(1)
$x+y+z=xyz(x \leqq y \leqq z)$を満たす$(x,y,z)$をすべて求めよ

(2)
$x^3+y^3+z^3=xyz$を満たす$(x,y,z)$は存在しないことを示せ

出典:2006年東京大学 過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題027〜神戸大学2016年度理系数学第3問〜2曲線の相接条件と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
aを正の定数とし、2曲線$C_1:y=\log x,C_2:y=ax^2$が点Pで接している。
以下の問いに答えよ。
(1)Pの座標とaの値を求めよ。
(2)2曲線$C_1,C_2$とx軸で囲まれた部分をx軸のまわりに1回転させてできる
立体の体積を求めよ。

2016神戸大学理系過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年薬学部第2問〜確率の基本性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{2}}} 与えられた図形の頂点から無作為に異なる3点を選んで三角形を作る試行を考える。ただし、\\
この試行におけるすべての根元事象は同様に確からしいとする。\\
(1)正n角形における前事象をU_nとし、その中で面積が最小の三角形ができる\\
事象をA_nとする。ただし、nはn \geqq 6を満たす自然数とする。\\
(\textrm{i})事象U_6において、事象A_6の確率は\boxed{\ \ ス\ \ }である。\\
(\textrm{ii})事象U_nにおいて、事象A_nの確率をnの式で表すと\boxed{\ \ セ\ \ }であり、\\
この確率が\frac{1}{1070}以下になる最小のnの値は\boxed{\ \ ソ\ \ }である。\\
(\textrm{iii})事象U_n \cap \bar{ A_n }において、面積が最小となる三角形ができる確率をnの式で\\
表すと\boxed{\ \ タ\ \ }である。\\
(2)1辺の長さが\sqrt2である立方体における全事象をVとすると、事象Vに含まれ\\
るすべての三角形の面積の平均値は\boxed{\ \ チ\ \ }である。\\
\end{eqnarray}

2021慶應義塾大学薬学部過去問
この動画を見る 
PAGE TOP