東大 東大受験芸人 たわしさん応援企画 2003東大入試問題 - 質問解決D.B.(データベース)

東大 東大受験芸人 たわしさん応援企画 2003東大入試問題

問題文全文(内容文):
$x^2-4x+1=0$の2つの解を$\alpha,\beta(\alpha \gt \beta)$
$S_n=\alpha^n+\beta^n$

(1)
$S_1,S_2,S_3$を求めよ
$S_n$を$S_{n-1},S_{n-2}$で表せ

(2)
$S_n$は正の整数であることを示し、$S_{2003}$の1の位を求めよ

(3)
$\alpha^{2003}$以下の最大の整数の1の位の数

出典:2003年東京大学 過去問
単元: #学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-4x+1=0$の2つの解を$\alpha,\beta(\alpha \gt \beta)$
$S_n=\alpha^n+\beta^n$

(1)
$S_1,S_2,S_3$を求めよ
$S_n$を$S_{n-1},S_{n-2}$で表せ

(2)
$S_n$は正の整数であることを示し、$S_{2003}$の1の位を求めよ

(3)
$\alpha^{2003}$以下の最大の整数の1の位の数

出典:2003年東京大学 過去問
投稿日:2019.09.22

<関連動画>

数学「大学入試良問集」【14−1 平面ベクトルと一次独立の様々な解法】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\triangle OAB$を$3:2$に内部する点を$C$、辺$OB$を$3:4$に内分する点を$D$とする。
線分$AD$と線分$BC$との交点を$P$とする。
また、$\triangle OPA,\triangle PDB$の面積をそれぞれ$S_1,S_2$とする。

(1)$\overrightarrow{ OP }$を$\overrightarrow{ OA }$と$\overrightarrow{ OB }$を用いて表せ。
(2)$S_1:S_2$を求めよ。
この動画を見る 

大学入試問題#781「絶対値付きの積分は、なんか苦手!」 久留米大学医学部(2005) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#久留米大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} |\sin\ x-2\sin\ 2x|\ dx$

出典:2005年久留米大学医学部 入試問題
この動画を見る 

大学入試問題#50 神戸大学2016 x軸回転体

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$a \gt 0$
$C_1:y=log\ x$
$c_2:y=ax^2$
$c_1$と$c_2$は接する。
$c_1,\ c_2,\ x$軸で囲まれた部分を$x$軸のまわりに1回転させてできる体積を求めよ。

出典:2016年神戸大学 入試問題
この動画を見る 

福田の数学〜東京理科大学2023年創域理工学部第1問(2)〜高次方程式と解と係数の関係

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)A, B, C, Dを定数とする。$f(x)$=$2x^3$-$9x^2$+$Ax$+$B$, $g(x)$=$x^2$-$Cx$-$D$
とおく。以下の問いに答えよ。
(a)$g(1-\sqrt 2)$=0 かつ $g(1+\sqrt 2)$=0のとき、$C$=$\boxed{\ \ セ\ \ }$, $D$=$\boxed{\ \ ソ\ \ }$である。また、$f(1-\sqrt 2)$=0 かつ $f(1+\sqrt 2)$=0のとき、$A$=$\boxed{\ \ タ\ \ }$, $B$=$\boxed{\ \ チ\ \ }$であり、方程式$f(x)$=0を満たす有理数$x$は
$x$=$\frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}$
である。
この動画を見る 

名古屋市立(医) 対数方程式 実数解 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#対数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'09名古屋市立大学過去問題
$(\log_2x)^3 - 6\log_{\sqrt2}x+k=0$
このxについての方程式が異なる2つの解をもつkの値と解を求めよ。
この動画を見る 
PAGE TOP