【みんな大好き】因数分解:東京電機~全国入試問題解法 - 質問解決D.B.(データベース)

【みんな大好き】因数分解:東京電機~全国入試問題解法

問題文全文(内容文):
入試問題 東京電機

因数分解せよ。
$x^8-16$
単元: #数学(中学生)#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#文字と式#高校入試過去問(数学)#東京電機大学高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 東京電機

因数分解せよ。
$x^8-16$
投稿日:2021.03.10

<関連動画>

【テスト対策・中2】1章-2

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$x=\dfrac{2}{5},y=-\dfrac{1}{3}$のとき,
$6(4x-5y)-4(x-3y)$の値を求めなさい.

②$x=\dfrac{1}{18},y=-2$のとき,
$8x^2y^3 \div \left(\dfrac{2}{3}x^2y\right)\times (-3x^3y)$の値を求めなさい.

③$A=-3x+y,B=5x-4y$のとき,
$2(3A+4B)-3(2B-A)$を計算しなさい.
この動画を見る 

【高校受験対策】数学-死守15

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#空間図形#確率#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問に答えなさい.

①$6x-x$を計算しなさい.

②$6+(-2)\times 4$を計算しなさい.

③$\sqrt{45}-2\sqrt5$を計算しなさい.

④$x=18$のとき,
$x^2-6x-16$の値を求めなさい.

⑤2次方程式$3x^2+7x+1=0$を解きなさい.

⑥連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+2y=18 \\
x+y=7
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑦関数$y=\dfrac{1}{2}x^2$の値が1から5まで増加するときの変化の割合が,
一次関数$y = ax + 2$ の変化の割合と等しくなりました.
$a$の値を求めなさい.

⑧図1のような円錐の形のチョコレートがあります.
このチョコレートの8分の1の量をもらえることになり,
底面と平行に切って頂点のあるほうをもらうことにしました.
母線の長さを$8cm$とすると,
頂点から母線にそって何$cm$のところを切ればよいかを求めなさい.

⑨図2で,$\angle A=48$の$△ABC$があり,$\angle B,\angle C$の
二等分線をそれぞれかいたときの交点を$D$とします.
このとき,$\angle BDC$の大きさを求めなさい.

➉図3のように,円周上に18個の点が等間隔に並んでおり,
そのうちの点を$P$とします.
1個の黒石を点$P$上に置き,この黒石を,
1から6までの目が出るさいころを1回投げるごとに,
出た目の数だけ円周上の点上を順に動かします.
動かし方は,偶数の目が出たときは右回りに,
奇数の目が出たときは左回りに動かすものとします.
さいころを3回投げたとき,黒石が点$P$に戻っている確率を求めなさい.

図は動画内を参照
この動画を見る 

文字式:久留米大学付属高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)#久留米大学附設高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 久留米大学附属高等学校

$a=\sqrt{ 3 }+\sqrt{ 15 }$
$b=\sqrt{ 3 }-\sqrt{ 15 }$
のとき
→$\displaystyle \frac{a^2-ab+b^2}{a^2+ab+b^2}$
の値を求めよ。
この動画を見る 

【数学】中2-4 いろいろな多項式の計算①

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
【レベル1】
①$5(2x-3y)=$
②$(8x-6y) \times (-\displaystyle \frac{1}{2})=$
③$(-16)(+10) \div (-4)=$
④$(4)(+6y)\div\displaystyle \frac{2}{3}$

【レベル2】
⑤$3(4x-2y)-(7x-5y)$
⑥$-4(-x+3y-2)-2(-5y+3x-1) $
⑦$\displaystyle \frac{2}{3}(6a-2b)+\div\displaystyle \frac{1}{3}(-9a+12b)$
この動画を見る 

【中学数学】式の計算:等式変形マスターへの道 5発目!『分数は消してから編』 m=(3a+2b)/5をa=の形にしましょう。

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$m=\dfrac{3a+2b}{5}$をa=の形にしましょう。
この動画を見る 
PAGE TOP