【中学数学】1次関数:関数決定マスターへの道 11発目! x軸・y軸交点編 - 質問解決D.B.(データベース)

【中学数学】1次関数:関数決定マスターへの道 11発目! x軸・y軸交点編

問題文全文(内容文):
次の条件を満たす1次関数を求めよ。 直線y=2x+1とy軸上で交わり、直線y=-3x-6とx軸上で交わる
単元: #数学(中学生)#中2数学#1次関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たす1次関数を求めよ。 直線y=2x+1とy軸上で交わり、直線y=-3x-6とx軸上で交わる
投稿日:2021.04.26

<関連動画>

【高校受験対策/数学】死守67

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#平方根#2次方程式#比例・反比例#平行と合同#確率#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守67

① 2次方程式を$x^3+3x-1=0$を解きなさい。

②$\sqrt{24}\div\sqrt{3}-\sqrt{2}$を計算しなさい。

③関数$y=\frac{3}{x}$について、$x$の変域が$1 \leqq x \leqq 6$のとき、$y$の変域を答えなさい。


$x$枚の空の封筒と$y$本の鉛筆がある。
封筒の中に鉛筆を4本ずつ入れると8本足りず、3本ずつ入れると12本余る。
このとき$x$と$y$の値を求めなさい。


右の図のような、$AD=2cm$、$BC=5cm$、$AD/\!/BC$である台形$ABCD$があり、対角線$AC$、$BD$の交点を$E$とする。
点$E$から辺$DC$上に辺$BC$と線分$EF$が平行となる点$F$をとるとき、線分$EF$の長さを答えなさい。


1から6までの目のついた大、小2つのさいころを同時に投げたとき、大きいさいころの出た目の数を$a$、小さいさいころの出た目の数を$b$とする。
このとき、出た目の数の積$a×b$の値が25以下となる確率を求めなさい。


右の図のように直線$l$と2つの点$A$、$B$がある。
直線$l$上にあって、2つの点$A$、$B$を通る円の中心$P$を、定規とコンパスを用いて作図しなさい。
ただし作図に使った線は消さずに残しておくこと。
この動画を見る 

平面図形は公立が面白い 愛知県(改) 令和4年度 2022 入試問題100題解説89問目!

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#平面図形#三角形と四角形
指導講師: 数学を数楽に
問題文全文(内容文):
長方形ABCD=80㎠
△ABE=10㎠
AB=?
*図は動画内参照

2022愛知県
この動画を見る 

【高校受験対策/数学】死守53

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守53

①$2-(-9)$を計算せよ。

②$52a^2b \div (-4a)$を計算せよ。

③$\sqrt{28}+\frac{49}{\sqrt{7}}$を計算せよ。

④$\frac{3x-y}{3}-\frac{x-2y}{4}$を計算せよ。

⑤$(\sqrt{2}+1)^2-5({\sqrt{2}+1)}+4$を計算せよ。

⑥2次方程式$x^2-5x-3=0$を解きなさい。

⑦関数$y=-\frac{1}{3}x^2$について、$x$の値が$3$から$6$まで増加するときの変化の割合を求めなさい。

⑧連立方程式
$ax+by=10$
$bx-ay=5$
の解が$x=2$、$y=1$であるとき$a$、$b$の値を求めなさい。

⑨ある動物園では、大人1人の入園料が子ども1人の入園料より600円高い。
大人1人の入園料と子ども 1人の入園料の比が$5:2$であるとき、子ども1人の入園料を求めなさい。

⑩$\frac{5880}{n}$が自然数の平方となるような、最も小さい自然数$n$の値を求めなさい。
この動画を見る 

【中学数学】多項式の乗法除法の問題演習~計算ミスしない方法~ 1-4【中2数学】

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\displaystyle
(1)\, 5(x+3y)
$
$\displaystyle
(2)\, -3a(b+4c)
$
$\displaystyle
(3)\, 2(2x-y)+3(x+4y)
$
$\displaystyle
(4)\, 9x+6y-4(x-2y)
$
$\displaystyle
(5)\, (12x+4y)\div 4
$
$\displaystyle
(6)\, (15a+2b)\div 3
$
$\displaystyle
(7)\, \frac{1}{4}(x+2)+\frac{1}{8}(5x-4)
$
$\displaystyle
(8)\, 12ab\div (-4b)
$
$\displaystyle
(9)\, 6ab\div 3b \times 2a
$
$\displaystyle
(10)\, (7x^2y+21xy^2+28)\div \frac{14}{3}
$
この動画を見る 

【中2 P.82】交点を使った面積特訓①

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
【中2 P.82】交点を使った面積特訓①解説していきます.
この動画を見る 
PAGE TOP