数学を好きになろう、音楽と共に!~全国入試問題解法 #数検 #高校入試 #数学 #点数 #勉強 - 質問解決D.B.(データベース)

数学を好きになろう、音楽と共に!~全国入試問題解法 #数検 #高校入試 #数学 #点数 #勉強

問題文全文(内容文):
数学を好きになろう、音楽と共に!

図において$x$の値を求めなさい。
単元: #数学(中学生)#中2数学#平行と合同
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
数学を好きになろう、音楽と共に!

図において$x$の値を求めなさい。
投稿日:2024.06.21

<関連動画>

【高校受験対策】数学-死守21

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#円#文章題#文章題その他#立体図形#体積・表面積・回転体・水量・変化のグラフ#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$7-(-5)$を計算しなさい.

②$(- 4) ^ 2 + 3 \times (- 2)$を計算しなさい.

③$\dfrac{3}{2} - 6y - \dfrac{1}{4} (3x-8y)$を計算しなさい.

④比例式$ 2:5 = (x - 2):(x + 7)$をみたす$x$の値を求めなさい.

⑤$\sqrt{45} - \sqrt{20} + \dfrac{15}{\sqrt5}$ を計算しなさい.

⑥$(x + 1)(x - 7) - 20$を因数分解しなさい.

⑦$a$の本の鉛筆を,$b$人の子どもに1人7本ずっ配ると3本余るとき,
$b$を$a$の式で表しなさい.

⑧ 右の図で,5点$A,B,C,D,E$は円$O$の円周上にあり,
$\angle BAC = 24°,\angle CED = 38°$,
$\stackrel{\huge\frown}{CD}=\stackrel{\huge\frown}{DE}$である.
線分$BD$と線分$CE$の交点を$F$とするとき,$\angle CFD$の大きさを求めなさい.

⑨下の表には,6人の生徒$A~F$のそれぞれの身長から,
160cmをひいた値が示されている/
この表をもとに,これら6人の生徒の身長の平均を求めたところ161.5cmであった.
このとき,生徒$F$の身長を求めなさい.

⑩半径が3cmの球と体積の等しい円柱がある.
この円柱の底面の半径が4cmのとき,円柱の高さを求めなさい.

図は動画内参照
この動画を見る 

数学を軽い気持ちで臨む!~全国入試問題解法 #数学 #高校入試 #勉強 #点数 #ライブ

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
数学を軽い気持ちで臨む!

$\begin{eqnarray}
\left\{
\begin{array}{l}
xy + x + 2y= 6 \\
2xy + x-y = 5
\end{array}
\right.
\end{eqnarray}$
を解け。

この動画を見る 

中2数学「かっこ・分数・小数の連立方程式」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~かっこ・分数・小数の連立方程式~

例題次の連立方程式を解きなさい。

(1)
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x-3y=1 \\
2x-11=3(x+y)
\end{array}
\right.
\end{eqnarray}$

(2)
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x-7=-3(y+2) \\
5x+6=2(y-5)
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

【中学数学】式の計算:等式変形マスターへの道 2発目!『邪魔なものは下に編』 3x+4y=48をx=の形にしましょう。

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 理数個別チャンネル
問題文全文(内容文):
3x+4y=48をx=の形にしましょう。
この動画を見る 

【受験対策】  数学-関数④

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#比例・反比例#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図のように、関数$y=\displaystyle \frac{24}{x}$とそのグラフ上の点Aがある。
直線又は点Aを通る傾きが3の直線で、 関数$y=\displaystyle \frac{24}{x}$とのもう一つの交点をBとします。
点Aのx座標が2のとき、次の問いに答えよう。

①点Aの座標は?

②点Bの座標は?

③△OABの面積は?
※図は動画内参照
この動画を見る 
PAGE TOP