横浜国大 複雑な漸化式 - 質問解決D.B.(データベース)

横浜国大 複雑な漸化式

問題文全文(内容文):
$a_0=1$一般項を求めよ$(n$自然数$)$
$a_n=\displaystyle \sum_{k=1}^n 3^ka_{n-k}$

出典:2000年横浜国立大学 過去問
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_0=1$一般項を求めよ$(n$自然数$)$
$a_n=\displaystyle \sum_{k=1}^n 3^ka_{n-k}$

出典:2000年横浜国立大学 過去問
投稿日:2019.12.14

<関連動画>

弘前大 漸化式 一般項を求めよ 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#数学(高校生)#弘前大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
弘前大学過去問題
$a_1 = 2$
$a_{n+1}= \frac{n+2}{n}a_n+1$
この動画を見る 

福田の一夜漬け数学〜数列・漸化式(2)〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の漸化式を解け。

$\begin{eqnarray}
\left\{
\begin{array}{l}
a_1=1\\
a_{n+1}=3a_n+2^n\\
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
a_1=1\\
a_{n+1}=2a_n+n^2+2n\\
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

【高校数学】 数B-73 和の記号Σ(シグマ)②

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の和を求めよう.

①$\displaystyle \sum_{k=1}^n {(4k+3)}$

②$\displaystyle \sum_{k=1}^n {(-3k^2+2k+4)}$

③$\displaystyle \sum_{k=1}^n {4・5^{k-1}}$

④$\displaystyle \sum_{k=1}^n {(k+1)(4k-3)}$
この動画を見る 

福田の一夜漬け数学〜確率漸化式(2)〜推移図の作り方のコツ(受験編)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 正三角形ABCの頂点$A$に小石が置いてある。1秒ごとにこの小石は
隣の頂点のどちらかに等確率で移動する。$n$秒後にこの小石が頂点$A$
にある確率を$p_n$とするとき、$p_n$を求めよ。
この動画を見る 

2つの解法レピュニット数の和

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
和を求めよ.

$1+11+111+・・・・\underbrace{111・・・・1}_{n桁}$
この動画を見る 
PAGE TOP