光文社新書「中学の知識でオイラー公式がわかる」Vol12 eとは何か前編 - 質問解決D.B.(データベース)

光文社新書「中学の知識でオイラー公式がわかる」Vol12 eとは何か前編

問題文全文(内容文):
①$e=\displaystyle \lim_{ n \to \infty } (1+\displaystyle \frac{1}{n})^n$

②$y=e^x$ $y^1=e^x$

③$y=e^x$
 $(0,1)$における接線の傾きが1

④$(log_ex)^1=\displaystyle \frac{1}{x}$
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
①$e=\displaystyle \lim_{ n \to \infty } (1+\displaystyle \frac{1}{n})^n$

②$y=e^x$ $y^1=e^x$

③$y=e^x$
 $(0,1)$における接線の傾きが1

④$(log_ex)^1=\displaystyle \frac{1}{x}$
投稿日:2020.01.16

<関連動画>

#高専_6#不定積分#元高専教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
以下の不定積分を解け。
$\displaystyle \int (3x+1)\cos2x$ $dx$
この動画を見る 

ヨビノリたくみ入試解説 2020一橋極限

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\displaystyle \lim_{x\to\infty}(\cos^2\sqrt{x+1}+\sin^2\sqrt x)=1$

2020一橋大過去問
この動画を見る 

福田の数学〜早稲田大学2021年理工学部第2問〜整式の割り算と二項定理

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ 整式$f(x)=x^4-x^2+1$ について、以下の問いに答えよ。
(1)$x^6$を$f(x)$で割った時の余りを求めよ。
(2)$x^{2021}$を$f(x)$で割った時の余りを求めよ。
(3)自然数$n$が$3$の倍数であるとき、$(x^2-1)^n-1$
が$f(x)$で割りきれることを示せ。

2021早稲田大学理工学部過去問
この動画を見る 

【高校数学】毎日積分65日目~47都道府県制覇への道~【⑨高知】【毎日17時投稿】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)すべての実数xに対して
$\sin 3x=3\sin x-4\sin^3x$
$\cos 3x=-3\cos x+4\cos^3x$
が成り立つことを、加法定理と2倍角の公式を用いて示せ。
(2)実数$\theta$を、$\dfrac{\pi}{3}\lt \theta \lt \dfrac{\pi}{2}$と$\cos 3\theta=-\dfrac{11}{16}$を同時に満たすものとする。このとき、$\cos\theta$を求めよ。
(3)(2)の$\theta$に対して、定積分$\displaystyle \int_{0}^{\theta}sin^5x dx$を求めよ。
【高知大学 2023】
この動画を見る 

三重大学 対数方程式 整数解の個数 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
三重大学過去問題
$α>0$
$f(x)=log_3(-\frac{1}{2}x^2+\frac{1}{2}αx+9)$
f(x)が整数となるxが$0 \leqq x \leqq α$の範囲でちょうど6個あるようなαの範囲
この動画を見る 
PAGE TOP