問題文全文(内容文):
$z=\cos\dfrac{13}{12}\pi+i \sin\dfrac{13}{12}\pi$を$\Box+\Box i$を中心に
$\dfrac{\pi}{6}$だけ回転させると,$\omega=\cos\dfrac{17}{12}\pi+i\sin\dfrac{17}{12}\pi$
2021東海大(医)
$z=\cos\dfrac{13}{12}\pi+i \sin\dfrac{13}{12}\pi$を$\Box+\Box i$を中心に
$\dfrac{\pi}{6}$だけ回転させると,$\omega=\cos\dfrac{17}{12}\pi+i\sin\dfrac{17}{12}\pi$
2021東海大(医)
単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$z=\cos\dfrac{13}{12}\pi+i \sin\dfrac{13}{12}\pi$を$\Box+\Box i$を中心に
$\dfrac{\pi}{6}$だけ回転させると,$\omega=\cos\dfrac{17}{12}\pi+i\sin\dfrac{17}{12}\pi$
2021東海大(医)
$z=\cos\dfrac{13}{12}\pi+i \sin\dfrac{13}{12}\pi$を$\Box+\Box i$を中心に
$\dfrac{\pi}{6}$だけ回転させると,$\omega=\cos\dfrac{17}{12}\pi+i\sin\dfrac{17}{12}\pi$
2021東海大(医)
投稿日:2021.02.06