問題文全文(内容文):
①~③の確率を求めよ。
①$\boxed{ 0 },\boxed{ 1 },\boxed{ 2 },\boxed{ 3 },\boxed{ 4 }$のカードから、
1枚ひき、それを十の位にして、もとにもどす。 そして、もう一度ひいて、それを一の位とする。 できた2けたの数が3の倍数になる確率は?
②数直線上の原点に動く点Pがいる。
コインを投げて、表が出たら正の方向に1. 裏が出たら負の方向に1進む。
コインを3回投げるとき、点Pが最後に-1にいる確率は?
※図は動画内参照
③図の五角形の頂点上を 移動する点Qがいる。 点Qはさいころの出た目 の数だけ頂点を反時計 まわりに移動する。
大小2つのさいころを振る とき、最後に点、Eで止まる確率は? (点QはAにいるよ。)
※図は動画内参照
①~③の確率を求めよ。
①$\boxed{ 0 },\boxed{ 1 },\boxed{ 2 },\boxed{ 3 },\boxed{ 4 }$のカードから、
1枚ひき、それを十の位にして、もとにもどす。 そして、もう一度ひいて、それを一の位とする。 できた2けたの数が3の倍数になる確率は?
②数直線上の原点に動く点Pがいる。
コインを投げて、表が出たら正の方向に1. 裏が出たら負の方向に1進む。
コインを3回投げるとき、点Pが最後に-1にいる確率は?
※図は動画内参照
③図の五角形の頂点上を 移動する点Qがいる。 点Qはさいころの出た目 の数だけ頂点を反時計 まわりに移動する。
大小2つのさいころを振る とき、最後に点、Eで止まる確率は? (点QはAにいるよ。)
※図は動画内参照
単元:
#数学(中学生)#中2数学#確率
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①~③の確率を求めよ。
①$\boxed{ 0 },\boxed{ 1 },\boxed{ 2 },\boxed{ 3 },\boxed{ 4 }$のカードから、
1枚ひき、それを十の位にして、もとにもどす。 そして、もう一度ひいて、それを一の位とする。 できた2けたの数が3の倍数になる確率は?
②数直線上の原点に動く点Pがいる。
コインを投げて、表が出たら正の方向に1. 裏が出たら負の方向に1進む。
コインを3回投げるとき、点Pが最後に-1にいる確率は?
※図は動画内参照
③図の五角形の頂点上を 移動する点Qがいる。 点Qはさいころの出た目 の数だけ頂点を反時計 まわりに移動する。
大小2つのさいころを振る とき、最後に点、Eで止まる確率は? (点QはAにいるよ。)
※図は動画内参照
①~③の確率を求めよ。
①$\boxed{ 0 },\boxed{ 1 },\boxed{ 2 },\boxed{ 3 },\boxed{ 4 }$のカードから、
1枚ひき、それを十の位にして、もとにもどす。 そして、もう一度ひいて、それを一の位とする。 できた2けたの数が3の倍数になる確率は?
②数直線上の原点に動く点Pがいる。
コインを投げて、表が出たら正の方向に1. 裏が出たら負の方向に1進む。
コインを3回投げるとき、点Pが最後に-1にいる確率は?
※図は動画内参照
③図の五角形の頂点上を 移動する点Qがいる。 点Qはさいころの出た目 の数だけ頂点を反時計 まわりに移動する。
大小2つのさいころを振る とき、最後に点、Eで止まる確率は? (点QはAにいるよ。)
※図は動画内参照
投稿日:2013.02.17