【数学】中2-85 確率チャレンジ Lv.7(まとめ編①) - 質問解決D.B.(データベース)

【数学】中2-85 確率チャレンジ Lv.7(まとめ編①)

問題文全文(内容文):
①~③の確率を求めよ。
①$\boxed{ 0 },\boxed{ 1 },\boxed{ 2 },\boxed{ 3 },\boxed{ 4 }$のカードから、
1枚ひき、それを十の位にして、もとにもどす。 そして、もう一度ひいて、それを一の位とする。 できた2けたの数が3の倍数になる確率は?

②数直線上の原点に動く点Pがいる。
コインを投げて、表が出たら正の方向に1. 裏が出たら負の方向に1進む。
コインを3回投げるとき、点Pが最後に-1にいる確率は?
※図は動画内参照

③図の五角形の頂点上を 移動する点Qがいる。 点Qはさいころの出た目 の数だけ頂点を反時計 まわりに移動する。
大小2つのさいころを振る とき、最後に点、Eで止まる確率は? (点QはAにいるよ。)
※図は動画内参照
単元: #数学(中学生)#中2数学#確率
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①~③の確率を求めよ。
①$\boxed{ 0 },\boxed{ 1 },\boxed{ 2 },\boxed{ 3 },\boxed{ 4 }$のカードから、
1枚ひき、それを十の位にして、もとにもどす。 そして、もう一度ひいて、それを一の位とする。 できた2けたの数が3の倍数になる確率は?

②数直線上の原点に動く点Pがいる。
コインを投げて、表が出たら正の方向に1. 裏が出たら負の方向に1進む。
コインを3回投げるとき、点Pが最後に-1にいる確率は?
※図は動画内参照

③図の五角形の頂点上を 移動する点Qがいる。 点Qはさいころの出た目 の数だけ頂点を反時計 まわりに移動する。
大小2つのさいころを振る とき、最後に点、Eで止まる確率は? (点QはAにいるよ。)
※図は動画内参照
投稿日:2013.02.17

<関連動画>

【5分で広がる数学の世界!】連立方程式からの比の計算~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$x:y: z$を求めよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
x + y +z= 0 \\
2x + 3y +5z= 0
\end{array}
\right.
\end{eqnarray}$

※高校入試では出ませんので、念のため・・・。
この動画を見る 

【中学数学】連立方程式:連立方程式文章題の発展問題

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
教材: #KEYワーク#KEYワーク(数学)中2#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
ある2桁の自然数がある。
その自然数は1の位の4倍の数より22大きく、10の位と1の位を入れ替えてできる数は元の自然数より18大きい。
元の自然数はいくつか。【連立方程式】
この動画を見る 

長方形の折り返し 解き方2通り 大阪星光学院

アイキャッチ画像
単元: #数学(中学生)#中2数学#平面図形#図形の移動#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
△ABC=?
*図は動画内参照

大阪星光学院高等学校
この動画を見る 

30秒で理解する図形の面積から文字式の解を求める手法~全国入試問題解法 #Shorts #数学 #高校入試

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$30ab+4bc-9a^2-23b^2+2c^2$の値を求めなさい.

名古屋国際高校過去問
この動画を見る 

【高校受験対策/数学】死守81(問題作りました)

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#1次関数#平行と合同#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守81

①$81÷(-3)-(-11)$を計算しなさい。

②次の式を因数分解しなさい。
$(x-2)^2-18(x-2)+81$

③次の連立方程式を解きなさい。
$3x+11y=13$
$2x-3y=19$

④$311x-8y=1$を$y$について解きなさい。

⑤絶対値が$81$である数をすべて書きなさい。

⑥右の図において2直線$l,m$は平行である。
このとき、$\angle x$の大きさを求めなさい。

⑦3点$(-3,-11)$、$(2,9)$、$(k,81)$が一直線上にあるとき、 $k$の値を求めなさい。

⑧定価$8100$円のパーカーが$a$割引で売っていた。
それを買おうとレジに持っていくと、キャンペーンだったようで、そこからさらに$500$円引きしてくれた。
このとき、パーカーを買ったときの代金を$a$を使った式で表しなさい。
ただし消費税については考えないものとする。
この動画を見る 
PAGE TOP