問題文全文(内容文):
加法、減法、乗法、除法を まとめて①____っていうよ。
【計算の順序】
②____→③____→乗除→加減
$(5+4) \times (-3)$を
$5 \times (-3)+4 \times (-3)$のように
することを④____法則っていうよ!
⑤$5 \times (-12)-12=(-4)$
⑥$-7+(-12-3) \div 5$
⑦$(-3)^2-5 \times (-2)^2$
⑧$7-(3^2-5)$
⑨$20 \div (-2^2)-(-6) \times 2$
⑩$-5-18 \div (-3)$
⑪$\{5-(4-8)\}\div (-3)$
⑫$6-\{(-2)^2(5-8)\}$
⑬$(-\displaystyle \frac{3}{2})^2 \div(-6) \times \displaystyle \frac{8}{7}$
⑭$(\displaystyle \frac{1}{4}-\displaystyle \frac{5}{6}) \times (-12)$
加法、減法、乗法、除法を まとめて①____っていうよ。
【計算の順序】
②____→③____→乗除→加減
$(5+4) \times (-3)$を
$5 \times (-3)+4 \times (-3)$のように
することを④____法則っていうよ!
⑤$5 \times (-12)-12=(-4)$
⑥$-7+(-12-3) \div 5$
⑦$(-3)^2-5 \times (-2)^2$
⑧$7-(3^2-5)$
⑨$20 \div (-2^2)-(-6) \times 2$
⑩$-5-18 \div (-3)$
⑪$\{5-(4-8)\}\div (-3)$
⑫$6-\{(-2)^2(5-8)\}$
⑬$(-\displaystyle \frac{3}{2})^2 \div(-6) \times \displaystyle \frac{8}{7}$
⑭$(\displaystyle \frac{1}{4}-\displaystyle \frac{5}{6}) \times (-12)$
単元:
#数学(中学生)#中1数学#正の数・負の数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
加法、減法、乗法、除法を まとめて①____っていうよ。
【計算の順序】
②____→③____→乗除→加減
$(5+4) \times (-3)$を
$5 \times (-3)+4 \times (-3)$のように
することを④____法則っていうよ!
⑤$5 \times (-12)-12=(-4)$
⑥$-7+(-12-3) \div 5$
⑦$(-3)^2-5 \times (-2)^2$
⑧$7-(3^2-5)$
⑨$20 \div (-2^2)-(-6) \times 2$
⑩$-5-18 \div (-3)$
⑪$\{5-(4-8)\}\div (-3)$
⑫$6-\{(-2)^2(5-8)\}$
⑬$(-\displaystyle \frac{3}{2})^2 \div(-6) \times \displaystyle \frac{8}{7}$
⑭$(\displaystyle \frac{1}{4}-\displaystyle \frac{5}{6}) \times (-12)$
加法、減法、乗法、除法を まとめて①____っていうよ。
【計算の順序】
②____→③____→乗除→加減
$(5+4) \times (-3)$を
$5 \times (-3)+4 \times (-3)$のように
することを④____法則っていうよ!
⑤$5 \times (-12)-12=(-4)$
⑥$-7+(-12-3) \div 5$
⑦$(-3)^2-5 \times (-2)^2$
⑧$7-(3^2-5)$
⑨$20 \div (-2^2)-(-6) \times 2$
⑩$-5-18 \div (-3)$
⑪$\{5-(4-8)\}\div (-3)$
⑫$6-\{(-2)^2(5-8)\}$
⑬$(-\displaystyle \frac{3}{2})^2 \div(-6) \times \displaystyle \frac{8}{7}$
⑭$(\displaystyle \frac{1}{4}-\displaystyle \frac{5}{6}) \times (-12)$
投稿日:2013.03.11