一橋大 漸化式&対数 - 質問解決D.B.(データベース)

一橋大 漸化式&対数

問題文全文(内容文):
数列$a_n,a_1=5,a_{n+1}=2,a_n+3^n$がある.

(1)$a_n$を求めよ.
(2)$a_n\lt 10^{10}$を満たす最大の$n$を求めよ.
$\log_{10}2=0.3010,\log_{10}3=0.4771$

1998一橋大過去問
単元: #数Ⅱ#指数関数と対数関数#対数関数#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
数列$a_n,a_1=5,a_{n+1}=2,a_n+3^n$がある.

(1)$a_n$を求めよ.
(2)$a_n\lt 10^{10}$を満たす最大の$n$を求めよ.
$\log_{10}2=0.3010,\log_{10}3=0.4771$

1998一橋大過去問
投稿日:2020.09.09

<関連動画>

北海道教育大 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#北海道教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'91北海道教育大学過去問題
$a_1=b_1=1$ n自然数
$a_{n+1}=a_n+b_n$
$b_{n+1}=4a_n+b_n$
(1){ $a_n+kb_n$ }が等比数列となるようなkを求めよ。
(2)$a_n,b_n$の一般項
この動画を見る 

共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年2B第4問〜数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\large第4問}$
[1]自然数$n$に対して、$S_n=5^n-1$とする。さらに、数列$\left\{a_n\right\}$の初項から
第$n$項までの和が$S_n$であるとする。このとき、$a_1=\boxed{\ \ ア\ \ }$である。また
$n \geqq 2$のとき
$a_n=\boxed{\ \ イ\ \ }・\boxed{\ \ ウ\ \ }^{n-1}$
である。この式は$n=1$の時にも成り立つ。
上で求めたことから、すべての自然数$n$に対して
$\sum_{k=1}^n\displaystyle \frac{1}{a_k}=\displaystyle \frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オカ\ \ }}\left(1-\boxed{\ \ キ\ \ }^{-n}\right)$
が成り立つことが分かる。

[2]太郎さんは和室の畳を見て、畳の敷き方が何通りあるかに興味を持った。
ちょうど手元にタイルがあったので、畳をタイルに置き換えて、
数学的に考えることにした。
縦の長さが1、横の長さが2の長方形のタイルが多数ある。
それらを縦か横の向きに、隙間も重なりもなく敷き詰めるとき、
その敷き詰め方をタイルの「配置」と呼ぶ。

上の図(※動画参照)のように、縦の長さが3,横の長さが$2n$の長方形を$R_n$とする。
$3n$枚のタイルを用いた$R_n$内の配置の総数を$r_n$とする。
$n=1$のときは、下の図(※動画参照)のように$r_1=3$である。

また、$n=2n4$ときは、下の図(※動画参照)のように$r_2=11$である。

(1)太郎さんは次のような図形$T_n$内の配置を考えた。
$(3n+1)$枚のタイルを用いた$T_n$内の配置の総数を$t_n$とする。$n=1$
のときは、$t_1=\boxed{\ \ ク\ \ }$である。
さらに、太郎さんは$T_n$内の配置について、右下隅のタイルに注目して
次のような図(※動画参照)をかいて考えた。

この図(※動画参照)から、2以上の自然数$n$に対して
$t_n=Ar_n+Bt_{n-1}$
が成り立つことが分かる。ただし、$A=\boxed{\ \ ケ\ \ }, B=\boxed{\ \ コ\ \ }$である。
以上から、$t_2=\boxed{\ \ サシ\ \ }$であることが分かる。
同様に、$R_n$の右下隅のタイルに注目して次のような図(※動画参照)をかいて考えた。

この図(※動画参照)から、2以上の自然数$n$に対して
$r_n=Cr_{n-1}+Dt_{n-1}$
が成り立つことが分かる。ただし、$C=\boxed{\ \ ス\ \ }, D=\boxed{\ \ セ\ \ }$である。

(2)畳を縦の長さが1, 横の長さが2の長方形と見なす。縦の長さが3, 横の長さが6
の長方形の部屋に畳を敷き詰めるとき、敷き詰め方の総数は$\boxed{\ \ ソタ\ \ }$である。
また、縦の長さが、横の長さがの長方形の部屋に畳を敷き詰めるとき、
敷き詰め方の総数は$\boxed{\ \ チツテ\ \ }$である。

2021共通テスト過去問
この動画を見る 

【数B】数列:漸化式の基本を解説シリーズその5 分数型

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a_1=1,a_{n+1}=\dfrac{a_{n}}{3a_n+2}$で定められる数列{$a_n$}の一般項を求めよ。
この動画を見る 

福田のおもしろ数学142〜チェビシェフの多項式に関する証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#三角関数#恒等式・等式・不等式の証明#加法定理とその応用#数列#数学的帰納法#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$n$を正の整数とする。$\cos n\theta$は$\cos\theta$の$n$次式で表されることを証明してください。
この動画を見る 

慶應義塾大(商)数列の和

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{k=1}^n k・2^{k+2}$

出典:2000年慶應義塾大学商学部 過去問
この動画を見る 
PAGE TOP