【数学】中2-3 式の加法・減法② - 質問解決D.B.(データベース)

【数学】中2-3 式の加法・減法②

問題文全文(内容文):
◎次の2つの式をたそう!!
①$ 2x-5y,-x-2y+5$
②$-x^2+11x-9,-7x+x^2$
左の式から右の式をひこう!!
③$x-2y, 3x+5y-2$
④$-2a+5b-c, 4a-b-c$
⑤ある式から$-3x+y$をひくと、$4x-5y$に なった。ある式をもとめよう!
⑥$7x-2y+4$からある式をひくと、$4x+5y-2$ になった。ある式をもとめよう!
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の2つの式をたそう!!
①$ 2x-5y,-x-2y+5$
②$-x^2+11x-9,-7x+x^2$
左の式から右の式をひこう!!
③$x-2y, 3x+5y-2$
④$-2a+5b-c, 4a-b-c$
⑤ある式から$-3x+y$をひくと、$4x-5y$に なった。ある式をもとめよう!
⑥$7x-2y+4$からある式をひくと、$4x+5y-2$ になった。ある式をもとめよう!
投稿日:2013.03.13

<関連動画>

気付けば一瞬!!式の値

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{a}{b} + \frac{b}{a} = 2$のとき
$a-b=?$
この動画を見る 

気づけるか? 三重高校

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$65^2-4 \times 2015 + 4 \times 31^2$

三重高等学校
この動画を見る 

【受験対策】 数学-小問②

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の計算をしよう。
①$-\displaystyle \frac{1}{7}+\displaystyle \frac{2}{5}$

②$2a+\displaystyle \frac{a}{3}$

③$(-4)^2+8 \div (-2)$

④$2a+b-\displaystyle \frac{2a+b}{3}$

⑤$8x^4y^3 \div 4xy^2$

⑥方程式$\displaystyle \frac{4x+5}{3}=x$を解こう。

⑦$2x-5y=7$を$x$について解こう。

⑧$x=\displaystyle \frac{4}{5},y=-2$のとき、$3(4x-y)-(2x-5y)$の値を求めよう。
この動画を見る 

🎍西暦"2023"を含む入試予想問題(その1)~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ 2023\times2021-2020^2-2022\times2025+2021^2+2022$を計算せよ.
この動画を見る 

高等学校入学試験予想問題:明治学院高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#空間図形#1次関数#2次関数#円#平面図形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ 9xy^2\div \left(-\dfrac{3}{2}xy\right)^3\times \dfrac{3}{4}x^4y$を計算せよ.
(2)$ \begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{3}{4}x+\dfrac{y}{2}=1 \\
2x-3y=1
\end{array}
\right.
\end{eqnarray}$ を解け.
(3)図の円$ O $において,$ \angle x $の大きさを求めよ.

$ \boxed{2}$

放物線$ y=x^2 $上に5点$ A,B,C,D,E $があり,それぞれのx座標は,$ a,-5,-2,2,4 $である.(ただし,$ a\lt -5 $)
さらに,線分$ CE $の中点$ F $は直線$ AD $上にあるとき,あとの問いに答えよ.
(1)点$ F $の座標を求めよ.
(2)$ a $の値を求めよ.
(3)$ \triangle ABD $と$ \triangle AED $の面積の比の最も簡単な整数の比で表せ.

$ \boxed{3}$

図のように,直方体$ ABCD-EFGH $があり,$ AB=3,AD=6,AE=2$である.
点$G$からこの直方体の対角線$CE$に垂線を引き,その交点を$P$とする.
このとき,次の各問いに答えよ.
(1)線分$ GP $の長さを求めよ.
(2)三角錐$ P-GEF$の体積を求めよ.
(3)辺$ AD $の中点を$Q$とし,辺$FG$上に$FR=2$となる点$R$をとる.
3点$B,Q,R $を通る平面と線分$EG$の交点を$S$とするとき,三角錐$P-GSR $の体積を求めよ.
この動画を見る 
PAGE TOP