問題文全文(内容文):
暗算ができないときは、長~い①____を使う!
そのときに、②____のすぐ後ろの項
を③____にするのを忘れないでね!!
④$5x \times (-2y)=$
⑤$-32xy \div (-4y)=$
⑥$\displaystyle \frac{1}{2}x \times \displaystyle \frac{4}{3}x=$
⑦$10a^2 \div (-2a^2)=$
⑧$(-5x)^2=$
⑨$-(5x)^2=$
⑩$6x^2y \div \displaystyle \frac{3}{2}xy=$
【ポイント】
$\displaystyle \frac{3}{2}xy$は⑪____と同じ!!
⑫$-5x^2 \div 10x \times (-4x)=$
⑬$\displaystyle \frac{2}{3}xy^2 \div \displaystyle \frac{1}{9}xy \div 2x=$
⑭$(-2x) \times (-3y) \times (-4xy)=$
⑮$(-2a)^2 \times (-4b) \div \displaystyle \frac{8}{5}ab=$
暗算ができないときは、長~い①____を使う!
そのときに、②____のすぐ後ろの項
を③____にするのを忘れないでね!!
④$5x \times (-2y)=$
⑤$-32xy \div (-4y)=$
⑥$\displaystyle \frac{1}{2}x \times \displaystyle \frac{4}{3}x=$
⑦$10a^2 \div (-2a^2)=$
⑧$(-5x)^2=$
⑨$-(5x)^2=$
⑩$6x^2y \div \displaystyle \frac{3}{2}xy=$
【ポイント】
$\displaystyle \frac{3}{2}xy$は⑪____と同じ!!
⑫$-5x^2 \div 10x \times (-4x)=$
⑬$\displaystyle \frac{2}{3}xy^2 \div \displaystyle \frac{1}{9}xy \div 2x=$
⑭$(-2x) \times (-3y) \times (-4xy)=$
⑮$(-2a)^2 \times (-4b) \div \displaystyle \frac{8}{5}ab=$
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
暗算ができないときは、長~い①____を使う!
そのときに、②____のすぐ後ろの項
を③____にするのを忘れないでね!!
④$5x \times (-2y)=$
⑤$-32xy \div (-4y)=$
⑥$\displaystyle \frac{1}{2}x \times \displaystyle \frac{4}{3}x=$
⑦$10a^2 \div (-2a^2)=$
⑧$(-5x)^2=$
⑨$-(5x)^2=$
⑩$6x^2y \div \displaystyle \frac{3}{2}xy=$
【ポイント】
$\displaystyle \frac{3}{2}xy$は⑪____と同じ!!
⑫$-5x^2 \div 10x \times (-4x)=$
⑬$\displaystyle \frac{2}{3}xy^2 \div \displaystyle \frac{1}{9}xy \div 2x=$
⑭$(-2x) \times (-3y) \times (-4xy)=$
⑮$(-2a)^2 \times (-4b) \div \displaystyle \frac{8}{5}ab=$
暗算ができないときは、長~い①____を使う!
そのときに、②____のすぐ後ろの項
を③____にするのを忘れないでね!!
④$5x \times (-2y)=$
⑤$-32xy \div (-4y)=$
⑥$\displaystyle \frac{1}{2}x \times \displaystyle \frac{4}{3}x=$
⑦$10a^2 \div (-2a^2)=$
⑧$(-5x)^2=$
⑨$-(5x)^2=$
⑩$6x^2y \div \displaystyle \frac{3}{2}xy=$
【ポイント】
$\displaystyle \frac{3}{2}xy$は⑪____と同じ!!
⑫$-5x^2 \div 10x \times (-4x)=$
⑬$\displaystyle \frac{2}{3}xy^2 \div \displaystyle \frac{1}{9}xy \div 2x=$
⑭$(-2x) \times (-3y) \times (-4xy)=$
⑮$(-2a)^2 \times (-4b) \div \displaystyle \frac{8}{5}ab=$
投稿日:2013.03.15