【数Ⅲ】積分法の応用:~授業風景シリーズ~ 回転体の体積 後編 - 質問解決D.B.(データベース)

【数Ⅲ】積分法の応用:~授業風景シリーズ~ 回転体の体積 後編

問題文全文(内容文):
【高校数学 数学Ⅲ 積分法の応用】
$y=\sin2x, y=\cos2x\left(\dfrac{\pi}{8}\leqq x\leqq\dfrac{5\pi}{8}\right)$で囲まれた部分をx軸の周りに回転して出来る立体の体積を求めよ。
チャプター:

0:00 オープニング 
0:15 例題説明 
1:19 回転体の概略図と問題を解くコツ 
3:23 実際に計算して求める

単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #チャート式#青チャートⅢ#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
【高校数学 数学Ⅲ 積分法の応用】
$y=\sin2x, y=\cos2x\left(\dfrac{\pi}{8}\leqq x\leqq\dfrac{5\pi}{8}\right)$で囲まれた部分をx軸の周りに回転して出来る立体の体積を求めよ。
投稿日:2021.08.23

<関連動画>

大学入試問題#516「ちょっとした公式で一撃!」 高知工科大学(2022) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#高知工科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \displaystyle \frac{dx}{\tan^2x\ \cos^2x}$

出典:2022年高知工科大学 入試問題
この動画を見る 

【数Ⅲ-157】定積分の部分積分法③

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分の部分積分法①)
Q次の定積分の値を求めよ

①$\int_1^{e} (\log x)^2dx$

➁$\int_0^{\frac{\pi}{2}}x^2 \cos^2 x \ dx$
この動画を見る 

大学入試問題#95 横浜市立大学医学部(2013) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#横浜市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}}\displaystyle \frac{\sqrt{ 2 }}{\sin\ x+\cos\ x}\ dx$を求めよ。

出典:2013年横浜市立大学医学部 入試問題
この動画を見る 

福田のおもしろ数学266〜直交する3つの円柱の共通部分の体積

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$x$軸、$y$軸、$z$軸を軸とする半径$1$の円柱$T_1,T_2,T_3$の共通部分の体積を求めて下さい。
この動画を見る 

この問題解けますか。

アイキャッチ画像
単元: #積分とその応用#定積分#数Ⅲ
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
$f(x)=\int_0^2{3x^2-xf(t)}dt$を満たす$f(x)$を求めよ
この動画を見る 
PAGE TOP