福田の数学〜九州大学2023年文系第2問〜2直線のなす角と外接円の半径 - 質問解決D.B.(データベース)

福田の数学〜九州大学2023年文系第2問〜2直線のなす角と外接円の半径

問題文全文(内容文):
$\Large\boxed{2}$ xy平面上の曲線C:$y$=$x^3$-$x$ を考える。変数$t$>0に対して、曲線C上の点A($t$, $t^3$-$t$)における接線を$l$とする。直線$l$と直線$y$=-$x$の交点をB、三角形OABの外接円の中心をPとする。以下の問いに答えよ。
(1)点Bの座標を$t$を用いて表せ。
(2)θ=$\angle$OBAとする。$\sin^2\theta$を$t$を用いて表せ。
(3)$f(t)$=$\frac{OP}{OA}$とする。$t$>0のとき、$f(t)$を最小にする$t$の値と$f(t)$の最小値を求めよ。

2023九州大学文系過去問
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ xy平面上の曲線C:$y$=$x^3$-$x$ を考える。変数$t$>0に対して、曲線C上の点A($t$, $t^3$-$t$)における接線を$l$とする。直線$l$と直線$y$=-$x$の交点をB、三角形OABの外接円の中心をPとする。以下の問いに答えよ。
(1)点Bの座標を$t$を用いて表せ。
(2)θ=$\angle$OBAとする。$\sin^2\theta$を$t$を用いて表せ。
(3)$f(t)$=$\frac{OP}{OA}$とする。$t$>0のとき、$f(t)$を最小にする$t$の値と$f(t)$の最小値を求めよ。

2023九州大学文系過去問
投稿日:2023.06.16

<関連動画>

福田の数学〜2023年共通テスト速報〜数学IA第5問図形の性質〜作図によって描いた図形の性質

アイキャッチ画像
単元: #数A#図形の性質#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
【第5問】
(1) 円Oに対して、次の手順1で作図を行う。
[手順1]
(Step 1) 円Oと異なる2点で交わり、中心Oを通らない直線lを引く。円Oと直線lとの交点をA, Bとし、線分ABの中点Cをとる。
(Step 2) 円Oの周上に、点Dを$\angle COD$が鈍角となるようにとる。直線CDを引き、円Oとの交点でDとは異なる点をEとする。
(Step 3) 点Dを通り直線OCに垂直な直線を引き、直線OCとの交点をFとし、円Oとの交点でDとは異なる点をGとする。
(Step 4) 点Gにおける円Oの接線を引き、直線lとの交点をHとする。
このとき、直線lと点Dの位置によらず、直線EHは円Oの接線である。このことは、次の構想に基づいて、後のように説明できる。
[構想]
直線EHが円Oの接線であることを証明するためには、$\angle OEH=\boxed{\ \ アイ\ \ }°$であることを示せばよい。
手順1の(Step 1)と(Step 4)により、4点C, G, H, $\boxed{\boxed{\ \ ウ\ \ }}$は同一円周上にあることがわかる。よって、$\angle CHG=\boxed{\boxed{\ \ エ\ \ }}$である。一方、点Eは円Oの周上にあることから、$\boxed{\boxed{\ \ エ\ \ }}=\boxed{\boxed{\ \ オ\ \ }}$がわかる。よって、$\angle CHG=\boxed{\boxed{\ \ オ\ \ }}$であるので、4点C, G, H, $\boxed{\boxed{\ \ カ\ \ }}$は同一円周上にある。この円が点$\boxed{\boxed{\ \ ウ\ \ }}$を通ることにより、$\angle OEH=\boxed{\ \ アイ\ \ }°$を示すことができる。

$\boxed{\boxed{\ \ ウ\ \ }}$の解答群
⓪B ①D ②F ③O
$\boxed{\boxed{\ \ エ\ \ }}$の解答群
⓪$\angle AFC$ ①$\angle CDF$ ②$\angle CGH$ ③$\angle CBO$ ④$\angle FOG$
$\boxed{\boxed{\ \ オ\ \ }}$の解答群
⓪$\angle AED$ ①$\angle ADE$ ②$\angle BOE$ ③$\angle DEG$ ④$\angle EOH$
$\boxed{\boxed{\ \ カ\ \ }}$の解答群
⓪A ①D ②E ③F
(2) 円Oに対して、(1)の手順1とは直線lの引き方を変え、次の手順2で作図を行う。
[手順2]
(Step 1) 円Oと共有点をもたない直線lを引く。中心Oから直線lに垂直な直線を引き、直線lとの交点をPとする。
(Step 2) 円Oの周上に、点Qを$\angle POQ$が鈍角となるようにとる。直線PQを引き、円Oとの交点でQとは異なる点をRとする。
(Step 3) 点Qを通り直線OPに垂直な直線を引き、円Oとの交点でQとは異なる点をSとする。
(Step 4) 点Sにおける円Oの接線を引き、直線lとの交点をTとする。
このとき、$\angle PTS=\boxed{\boxed{\ \ キ\ \ }}$である。
円Oの半径が$\sqrt 5$で、OT=$3\sqrt 6$であったとすると、3点O, P, Rを通る円の半径は$\frac{\boxed{\ \ ク\ \ }\sqrt{\boxed{\ \ ケ\ \ }}}{\boxed{\ \ コ\ \ }}$であり、RT=$\boxed{\ \ サ\ \ }$である。
$\boxed{\boxed{\ \ キ\ \ }}$の解答群
⓪$\angle PQS$ ①$\angle PST$ ②$\angle QPS$ ③$\angle QRS$ ④$\angle SRT$

2023共通テスト過去問
この動画を見る 

数学オリンピック 予選の簡単な問題

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
数学オリンピック予選
$1^{2001}+2^{2001}+3^{2001}+\cdots+2000^{2001}+$
$2001^{2001}$を13で割った余りを求めよ.
この動画を見る 

勘で英検合格する確率は?

アイキャッチ画像
単元: #数A#場合の数と確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
下記質問の解説動画です
全部勘で英検やって合格する確率ってどれくらいですか?
この動画を見る 

割ると余りと商が等しい 2021西大和学園B

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
自然数Nを49で割ったとき商と余りが等しくなった。
このようなNのうち2021より大きいNの個数は?

2021西大和学園高等学校
この動画を見る 

【数A】整数の性質:合同式② a,bは3で割り切れない整数とする。このとき、a⁴+a²b²+b⁴は3で割り切れることを証明せよ。

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
a,bは3で割り切れない整数とする。このとき、$a^4+a^2b^2+b^4$は3で割り切れることを証明せよ。
この動画を見る 
PAGE TOP