【For you 動画-16】 数B-数学的帰納法 - 質問解決D.B.(データベース)

【For you 動画-16】  数B-数学的帰納法

問題文全文(内容文):
[i]①____のとき成り立つことを確かめる。
[ii]②____のとき成り立つと③____ して、それを使って④____ のときに成り立つことをいう。

[iii]『以上より、すべての自然数に ついて成り立つ』と書こう!

◎$n$を自然数とするとき、$3^{n} \gt 2n$を証明しよう!

[i]⑤____のとき、⑥____ より成り立つ。

[ii]⑦____のとき成り立つと⑧すると


⑩____のとき、⑪____ を考えると
$\boxed{ ⑫ }$

つまり $3^{k+1} \gt 2(k+1)$となり
$n=k+1$のとき成り立つ。

[ iii] 以上より、すべての自然数について成り立つ。
単元: #数学的帰納法#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
[i]①____のとき成り立つことを確かめる。
[ii]②____のとき成り立つと③____ して、それを使って④____ のときに成り立つことをいう。

[iii]『以上より、すべての自然数に ついて成り立つ』と書こう!

◎$n$を自然数とするとき、$3^{n} \gt 2n$を証明しよう!

[i]⑤____のとき、⑥____ より成り立つ。

[ii]⑦____のとき成り立つと⑧すると


⑩____のとき、⑪____ を考えると
$\boxed{ ⑫ }$

つまり $3^{k+1} \gt 2(k+1)$となり
$n=k+1$のとき成り立つ。

[ iii] 以上より、すべての自然数について成り立つ。
投稿日:2014.05.27

<関連動画>

福田の数学〜立教大学2023年理学部第4問〜数学的帰納法とはさみうちの原理

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 正の数列$x_1$,$x_2$,$x_3$,...,$x_n$,... は以下を満たすとする。
$x_1$=8, $x_{n+1}$=$\sqrt{1+x_n}$ ($n$=1,2,3,...)
このとき、次の問いに答えよ。
(1)$x_2$,$x_3$,$x_4$をそれぞれ求めよ。
(2)すべての$n$≧1について($x_{n+1}$-$\alpha$)($x_{n+1}$+$\alpha$)=$x_n$-$\alpha$ となる定数$\alpha$で、
正であるものを求めよ。
(3)$\alpha$を(2)で求めたものとする。すべての$n$≧1について$x_n$>$\alpha$であることを$n$に関する数学的帰納法で示せ。
(4)極限値$\displaystyle\lim_{n \to \infty}x_n$を求めよ。
この動画を見る 

福田のおもしろ数学142〜チェビシェフの多項式に関する証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#三角関数#恒等式・等式・不等式の証明#加法定理とその応用#数列#数学的帰納法#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$n$を正の整数とする。$\cos n\theta$は$\cos\theta$の$n$次式で表されることを証明してください。
この動画を見る 

宮崎大 数学的帰納法 合同式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n=2^n+1$
$a_n$のうち5で割り切れるものを小さい順に並べた数列を$b_k$とする.

(1)$b_k$を推定せよ.
(2)(1)の推定が全ての自然数$k$で成立することを証明せよ.

宮崎大過去問
この動画を見る 

【数B】数列:nを自然数とするとき、4^(n+1)+9^nは5の倍数であることを、数学的帰納法を用いて証明せよ。

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
nを自然数とするとき、$4^(n+1)+9^n$は5の倍数であることを、数学的帰納法を用いて証明せよ。
この動画を見る 

【数B】数列:2つ前までさかのぼる数学的帰納法:すべての自然数nについて、t=x+1/xとおくと、x^n+1/x^nはtのn次式であることを証明せよ。

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
すべての自然数$n$について、$t=x+\dfrac{1}{x}$とおくと、$\dfrac{x^n+1}{x^n}$
は$t$の$n$次式であることを証明せよ。

この動画を見る 
PAGE TOP