問題文全文(内容文):
[i]①____のとき成り立つことを確かめる。
[ii]②____のとき成り立つと③____ して、それを使って④____ のときに成り立つことをいう。
[iii]『以上より、すべての自然数に ついて成り立つ』と書こう!
◎$n$を自然数とするとき、$3^{n} \gt 2n$を証明しよう!
[i]⑤____のとき、⑥____ より成り立つ。
[ii]⑦____のとき成り立つと⑧すると
⑨
⑩____のとき、⑪____ を考えると
$\boxed{ ⑫ }$
つまり $3^{k+1} \gt 2(k+1)$となり
$n=k+1$のとき成り立つ。
[ iii] 以上より、すべての自然数について成り立つ。
[i]①____のとき成り立つことを確かめる。
[ii]②____のとき成り立つと③____ して、それを使って④____ のときに成り立つことをいう。
[iii]『以上より、すべての自然数に ついて成り立つ』と書こう!
◎$n$を自然数とするとき、$3^{n} \gt 2n$を証明しよう!
[i]⑤____のとき、⑥____ より成り立つ。
[ii]⑦____のとき成り立つと⑧すると
⑨
⑩____のとき、⑪____ を考えると
$\boxed{ ⑫ }$
つまり $3^{k+1} \gt 2(k+1)$となり
$n=k+1$のとき成り立つ。
[ iii] 以上より、すべての自然数について成り立つ。
単元:
#数学的帰納法#数学(高校生)#数B
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
[i]①____のとき成り立つことを確かめる。
[ii]②____のとき成り立つと③____ して、それを使って④____ のときに成り立つことをいう。
[iii]『以上より、すべての自然数に ついて成り立つ』と書こう!
◎$n$を自然数とするとき、$3^{n} \gt 2n$を証明しよう!
[i]⑤____のとき、⑥____ より成り立つ。
[ii]⑦____のとき成り立つと⑧すると
⑨
⑩____のとき、⑪____ を考えると
$\boxed{ ⑫ }$
つまり $3^{k+1} \gt 2(k+1)$となり
$n=k+1$のとき成り立つ。
[ iii] 以上より、すべての自然数について成り立つ。
[i]①____のとき成り立つことを確かめる。
[ii]②____のとき成り立つと③____ して、それを使って④____ のときに成り立つことをいう。
[iii]『以上より、すべての自然数に ついて成り立つ』と書こう!
◎$n$を自然数とするとき、$3^{n} \gt 2n$を証明しよう!
[i]⑤____のとき、⑥____ より成り立つ。
[ii]⑦____のとき成り立つと⑧すると
⑨
⑩____のとき、⑪____ を考えると
$\boxed{ ⑫ }$
つまり $3^{k+1} \gt 2(k+1)$となり
$n=k+1$のとき成り立つ。
[ iii] 以上より、すべての自然数について成り立つ。
投稿日:2014.05.27