慶應より早稲田より青山が難しい。 - 質問解決D.B.(データベース)

慶應より早稲田より青山が難しい。

問題文全文(内容文):
下の文字を1列に並べたとき場合の数は何通り?
(1)K,E,I,O
(2)W,A,S,E,D,A
(3)A,O,Y,A,M,A
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
下の文字を1列に並べたとき場合の数は何通り?
(1)K,E,I,O
(2)W,A,S,E,D,A
(3)A,O,Y,A,M,A
投稿日:2021.03.21

<関連動画>

【演習で復習・解説!】条件付き確率を5分で復習!〔数学 高校数学〕

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
大小のサイコロを1個ずつ投げた。このとき以下の2つの事象を定義する。
A: 大きいサイコロの目が4
B: サイコロの目の和が9
以下の問に答えよ。
(1)事象Aが起こる確率と事象Bが起こる確率をそれぞれ求めよ。
(2)事象Bが起こった時の事象Aが起こる条件付き確率を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2022年環境情報学部第6問〜新型ウィルス感染拡大による大学の授業形態の決定

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#図形と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{6}}\ ある大学で来学期の授業の形式をどうするかを検討している。\hspace{131pt}\\
授業形式の選択としては、通常の対面形式(授業形式uと呼ぶことにする)、\\
\textrm{Web}上で試料を閲覧できたり課題を行ったりできるオンデマンド形式(授業形式vと呼ぶことにする)\\
\textrm{Web}会議システムを使用するオンライン配信形式(授業形式wと呼ぶことにする)\\
の3つがあるとする。\\
また、来学期の新型ウイルスの感染状況については、\\
急激に拡大している状況(感染状況xと呼ぶことにする)、\\
ピークは過ぎたが十分な収束にはいたっていない状況(感染状況yとよぶことにする)、\\
ある程度収束した状況(感染状況zとよぶことにする)の3つが考えられるとする。\\
いま、この大学は授業形式と新型ウイルスの感染状況の組み合わせについて、\\
次の表(※動画参照)に示す評論値(値が高いほど評価も高い)を定めているものとする。\\
\\
来学期の感染状況について、感染状況xである確率をp_x、\\
感染状況yである確率をp_y、感染状況zである確率をp_zとすると、\\
xyz空間において点p=(p_x,p_y,p_z)は(1,0,0),(0,1,0),(0,0,1)を頂点とする正三角形上の\\
点としてあらわすことができる。この正三角形上において、点pから各辺に垂線を下ろしたとき、\\
(1,0,0)と向かいの辺に下ろした垂線の長さをl_x、(0,1,0)と向かいの辺に下した垂線の長さをl_y、\\
(0,0,1)と向かいの辺に下した垂線の長さをl_zとする。\\
(1)このときp_x=\frac{\sqrt{\boxed{\ \ アイ\ \ }}}{\boxed{\ \ ウエ\ \ }}\ l_x,\ \ \ \,p_y=\frac{\sqrt{\boxed{\ \ オカ\ \ }}}{\boxed{\ \ キク\ \ }}\ l_y,\ \ \ \ p_z=\frac{\sqrt{\boxed{\ \ ケコ\ \ }}}{\boxed{\ \ サシ\ \ }}\ l_z\ \ \ \ が成り立つ。\\
\\
いま、正三角形上の点p=(p_x,p_y,p_z)に対して、上記の評価の期待値を最大にする\\
授業形式のラベルをつけることにする。ただし、pによっては評価値を最大にする選択が\\
複数ある場合もあり、その場合にはpに複数のラベルをつけることにする。\\
さらに、原点と(0,1,0),(0,0,1)を原点とするyz平面上の直角二等辺三角形の頂点、辺、内部\\
からなるすべての点にxという感染状況のラベルをつけ、\\
原点と(1,0,0),(0,0,1)を原点とするxz平面上の直角二等辺三角形の頂点、辺、内部\\
からなるすべての点にyという感染状況のラベルをつけ、\\
原点と(1,0,0),(0,1,0)を原点とするxy平面上の直角二等辺三角形の頂点、辺、内部\\
からなるすべての点にzという感染状況のラベルをつけることにする。\\
\\
すると、正三角形と3つの直角二等辺三角形からなる四面体の面上(頂点、辺も含む)\\
のそれぞれの点には、1つもしくは複数のラベルがつくことになる。例えば、\\
原点には\left\{x,y,z\right\}の3つのラベルがつく。\\
(2)このとき、正三角形の面上(頂点、辺も含む)の各点pにつけられるラベルの\\
可能性を列挙すると、以下の通りとなる。ただし、複数のラベルがつけられる場合には、\\
それぞれの中括弧内では、アルファベット順に書くものとする。空欄に入る\\
ラベルについて下記の選択肢から選びなさい。\\
単一のラベルがつく場合:\left\{\boxed{\ \ ス\ \ }\right\},\left\{w\right\}\\
2つのラベルがつく場合:\left\{\boxed{\ \ セ\ \ },w\right\},\left\{u,\boxed{\ \ ソ\ \ }\right\},\\
\left\{\boxed{\ \ タ\ \ },y\right\},\left\{w,y\right\},\left\{\boxed{\ \ チ\ \ },z\right\}\\
3つのラベルがつく場合:\left\{\boxed{\ \ ツ\ \ },w,\boxed{\ \ テ\ \ }\right\},\left\{\boxed{\ \ ト\ \ },\boxed{\ \ ナ\ \ },\boxed{\ \ ニ\ \ }\right\}\\
4つのラベルがつく場合:\left\{u,\boxed{\ \ ヌ\ \ },\boxed{\ \ ネ\ \ },\boxed{\ \ ノ\ \ }\right\},\left\{\boxed{\ \ ハ\ \ },\boxed{\ \ ヒ\ \ },\boxed{\ \ フ\ \ },\boxed{\ \ ヘ\ \ }\right\}\\
\\
\\
選択肢:\ \ \ (1)\ \ \ u\ \ \ (2)\ \ \ v\ \ \ (3)\ \ \ w\ \ \ (4)\ \ \ x\ \ \ (5)\ \ \ y\ \ \ (6)\ \ \ z \ \ \
\end{eqnarray}

2022慶應義塾大学環境情報学部過去問
この動画を見る 

福田のわかった数学〜高校1年生079〜場合の数(18)連続しない自然数の選び方

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 場合の数(18) 連続しない整数\\
1,2,3,\ldots,19,20の20個の数字から、どの2つも連続しないような8個の数字を\\
選ぶ方法は何通りあるか。
\end{eqnarray}
この動画を見る 

旭川医科大2023確率問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#旭川医科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
コインを繰り返し投げて同じ面が3回続けて出たら終了するとき、
n,(n+1),(n+2) 回目に表が出て終了する確率を$P_n$とおくとき、

$\displaystyle \sum_{n=1}^\infty P_n$

を求めよ

旭川医大過去問
この動画を見る 

順天堂(医)確率 基本

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#順天堂大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
ある1つの箱から とり出して戻すを3回行ったら
●●○となった
箱がAである確率を求めよ

2022年順天堂医学大学 過去問
この動画を見る 
PAGE TOP