因数分解 B 明大明治 2021 - 質問解決D.B.(データベース)

因数分解 B 明大明治 2021

問題文全文(内容文):
$4a^2-b^2+16c^2-16ac$を因数分解せよ。

2021明治大学付属明治高等学校
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$4a^2-b^2+16c^2-16ac$を因数分解せよ。

2021明治大学付属明治高等学校
投稿日:2021.02.18

<関連動画>

【高校への準備編!!】高校での因数分解の基礎を現役塾講師が簡単に解説!〔現役塾講師解説、数学〕

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 3rd School
問題文全文(内容文):
因数分解の基礎について解説します。
この動画を見る 

学校では教えてくれない裏技

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
たすき掛け因数分解の裏技紹介動画です
この動画を見る 

【#6】【因数分解100問】基礎から応用まで!(51)〜(60)【解説付き】

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(51)$a^2(b+c)+b^2(c+a)+c^2(a+b)+3abc$
(52)$ab(a+b)+bc(b+c)+ca(c+a)+3abc$
(53)$x^4-15x^2+9$
(54)$x^4+x^2y^2+y^4$
(55)$x^4+4y^4$
(56)$(a^2+a+1)(a^2-a+1)$
(57)$(x+1)(x-1)(x+3)(x-3)$
(58)$(x-3)^3$
(59)$(x+2)(x-2)(x-3)$
(60)$(2x^2+4xy+2y^2+2x+2y+1)(2x+2y+1)$
この動画を見る 

【とても大切な解法…!】二次方程式:中央大学附属高等学校~全国入試解法

単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#2次方程式#高校入試過去問(数学)#中央大学附属高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2次方程式 $3\left(x+1\right)^2=2\left(x+1\right)\left(x-6\right)-\left(x+1\right)\left(x-1\right)\;$を解きなさい。
この動画を見る 

福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察3(受験編)

アイキャッチ画像
単元: #中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#数と式#式と証明#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#恒等式・等式・不等式の証明#文字と式
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $\displaystyle \frac{a+b+c+d}{4} \geqq \sqrt[4]{abcd}$ を既知として、$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$ を証明せよ。
ただし、$a,b,c,d$は全て正の数であるとする。

${\Large\boxed{2}}\ \boxed{1}$を利用して、$n$個の変数の相加・相乗平均の関係を証明せよ。
つまり、$n$個の正の数$a_1,a_2,\cdot,a_n$に対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} $$\geqq \sqrt[n]{a_1a_2\cdots a_n}$
この動画を見る 
PAGE TOP