【数学】2022年度神奈川県立高校入試数学大問5アイ - 質問解決D.B.(データベース)

【数学】2022年度神奈川県立高校入試数学大問5アイ

問題文全文(内容文):
大,小2つのさいころを同時に1回投げ,大きいさいころの出た目の数をa,小さいさいころの出た目の数をbとする。出た目の数によって,線分PQ上に点Rを,PR:RQ=a:bとなるようにとり,線分PRを1辺とする正方形をX,線分RQを1辺とする正方形をYとし,この2つの正方形の面積を比較する。
(ア) Xの面積とYの面積が等しくなる確率は□である。
(イ) Xの面積がYの面積より25cm²以上大きくなる確率は□である。
チャプター:

0:00 オープニング
0:06 条件整理
0:51 (ア)の考え方
2:07 (イ)の考え方
2:37 ゾロ目の消去
3:09 a<bの消去
3:42 条件に適する目の数え上げ
5:24 同列を全て〇にできる理由
8:53 解答

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大,小2つのさいころを同時に1回投げ,大きいさいころの出た目の数をa,小さいさいころの出た目の数をbとする。出た目の数によって,線分PQ上に点Rを,PR:RQ=a:bとなるようにとり,線分PRを1辺とする正方形をX,線分RQを1辺とする正方形をYとし,この2つの正方形の面積を比較する。
(ア) Xの面積とYの面積が等しくなる確率は□である。
(イ) Xの面積がYの面積より25cm²以上大きくなる確率は□である。
投稿日:2023.01.17

<関連動画>

法政大・お茶の水女子大 高次方程式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学#法政大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha^6+\alpha^5-9\alpha^4-10\alpha^3-9\alpha^2+\alpha+1=0$
6つの解を求めよ

$x^4-6x^3-x^2+18x+9=0$
4つの解を求めよ

出典:法政大学 お茶の水女子大学 過去問
この動画を見る 

福田の数学〜九州大学2022年理系第4問〜定積分の定義から性質を証明する

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#微分とその応用#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
定積分について述べた次の文章を読んで、後の問いに答えよ。
区間$a \leqq x \leqq b$で連続な関数f(x)に対して$F'(x)=f(x)$となる$F(x)$を1つ選び、
$f(x)$のaからbまでの定積分を
$\int_a^bf(x)dx=F(b)-F(a)         \ldots①$
で定義する。定積分の値はF(x)の選び方によらずに定まる。
定積分は次の性質(A),(B),(C)をもつ。
(A)$\int_a^b\left\{kf(x)+lg(x)\right\}dx=k\int_a^bf(x)dx+l\int_a^bg(x)dx$
(B)$ a \leqq c \leqq b$のとき、$\int_a^cf(x)dx+\int_c^bf(x)dx=\int_a^bf(x)dx$
(C)区間$a \leqq x \leqq b$において$g(x) \geqq h(x)$ならば、$\int_a^bg(x)dx \geqq \int_a^bh(x)dx$
ただし、$f(x),g(x),h(x)$は区間$a \leqq x \leqq b$で連続な関数、$k,l$は定数である。
以下、$f(x)$を区間$0 \leqq x \leqq 1$で連続な増加関数とし、
nを自然数とする。定積分の性質$\boxed{\ \ ア\ \ }$を用い、定数関数に対する定積分の計算を行うと、
$\frac{1}{n}f(\frac{i-1}{n}) \leqq \int_{\frac{i-1}{n}}^{\frac{i}{n}}f(x)dx \leqq \frac{1}{n}f(\frac{i}{n})  (i = 1,2,\ldots,n)     \ldots②$
が成り立つことがわかる。$S_n=\frac{1}{n}\sum_{i=1}^nf(\frac{i-1}{n})$とおくと、
不等式②と定積分の性質$\boxed{\ \ イ\ \ }$より次の不等式が成り立つ。
$0 \leqq \int_0^1f(x)dx-S_n \leqq \frac{f(1)-f(0)}{n}     \ldots③$
よって、はさみうちの原理より$\lim_{n \to \infty}S_n=\int_0^1f(x)dx$が成り立つ。

(1)関数F(x),G(x)が微分可能であるとき、$\left\{F(x)+G(x)\right\}'=F'(x)+G'(x)$が
成り立つことを、導関数の定義に従って示せ。
また、この等式と定積分の定義①を用いて、性質(A)で$k=l=1$とした場合の等式
$\int_a^b\left\{f(x)+g(x)\right\}dx=\int_a^bf(x)dx+\int_a^bg(x)dx$ を示せ。
(2)定積分の定義①と平均値の定理を用いて、次を示せ。
$a \lt b$のとき、区間$a \leqq x \leqq b$において$g(x) \gt 0$ならば、$\int_a^bg(x)dx \gt 0$
(3)(A),(B),(C)のうち、空欄$\boxed{\ \ ア\ \ }$に入る記号として最もふさわしいものを
1つ選び答えよ。また、文章中の下線部の内容を詳しく説明することで、
不等式②を示せ。
(4)(A),(B),(C)のうち、空欄$\boxed{\ \ イ\ \ }$に入る記号として最もふさわしいものを
1つ選び答えよ。また、不等式③を示せ。

2022九州大学理系過去問
この動画を見る 

関西医科大 対数方程式の基礎

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#関西医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2020関西医科大学過去問題
$\log_4(2x^2)-\log_x4+\frac{1}{2}=0$
この動画を見る 

福田の数学〜東京大学2025理系第5問〜バブルソートが題材となった数が整列する条件を漸化式にする

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

$n$を$2$以上の整数とする。

$1$から$n$までの数字が書かれた札が各$1$枚ずつ合計$n$枚あり、

横一列におかれている。

$1$以上$(n-1)$以下の整数$i$に対して、

次の操作$(T_i)$を考える。

$(T_i)$左から$i$番目の札の数字が、

左から$(i+1)$番目の札の数字よりも大きければ、

これら$2$枚の札の位置を入れ替える。

そうでなければ、札の位置を変えない。

最初の状態において札の数字は左から

$A_1,A_2,\cdots A_n$であったとする。

この状態から$(n-1)$回の操作$(T_1),(T_2),\cdots (T_{n-1})$を

順に行った後、続けて$(n-1)$回の操作

$(T_{n-1}),\cdots ,(T_2),(T_1)$を順に行ったところ、

札の数字は左から$1,2,\cdots ,n$と小さい順に並んだ。

以下の問いに答えよ。

(1)$A_1$と$A_2$の少なくとも一方は$2$以下であることを示せ。

(2)最初の状態としてありうる札の数字の並び方

$A_1,A_2,\cdots 、A_n$no総数を$c_n$とする。

$n$が$4$以上の整数であるとき、

$c_n$を$c_{n-1}$と$c_{n-2}$を用いて表せ。

$2025$年東京大学理系過去問題
この動画を見る 

福田の数学〜過去の入試問題(期間限定)〜東京慈恵会医科大学医学部2020第2問〜関数列の極限

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\fbox{1}$ 次の$\square$にあてはまる適切な数値を解答欄に記入せよ。
袋$A$には赤玉$3$個、白玉$1$個、袋$B$には赤玉$1$個、白玉$3$個が入っている。
「袋$A$から$2$個の玉を取り出して袋$B$に入れ、次に袋$B$から$2$個の玉を取り出して袋$A$に入れる」という操作を繰り返す。$1$回の操作の後、袋$A$に白玉が$2$個以上ある確率は$\fbox{ア}$、$2$回の操作の後、袋$A$の中が白玉だけになる確率は$\fbox{イ}$である。
この動画を見る 
PAGE TOP