【数検3級】数学検定3級2次 問題9 - 質問解決D.B.(データベース)

【数検3級】数学検定3級2次 問題9

問題文全文(内容文):
問題9.次の問いに答えなさい。
(19) ある中学校の1年生の生徒数は18人、2年生の生徒数は27人、3年生の生徒数は20人です。それぞれの学年の通学時間を調べて平均を求めると、1年生は15.5分、2年生は32.0分、3年生は21.5分でした。生徒全体の通学時間の平均は何分ですか。
(20) いくつかの値からなるデータの中に極端にかけ離れた値があると、平均値はその値に強く影響を受けてしまうことがあります。
 Aさんは5つの正の整数を思い浮かべました。これらの数の平均値は2021です。このとき、Aさんが思い浮かべた可能性がある数
の最大値を求めなさい。ただし、5つの数に同じ数があってもよいものとします。
チャプター:

0:00 問題9について
0:58 (19)の解説
2:40 (20)の解説
5:18 まとめ

単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定3級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題9.次の問いに答えなさい。
(19) ある中学校の1年生の生徒数は18人、2年生の生徒数は27人、3年生の生徒数は20人です。それぞれの学年の通学時間を調べて平均を求めると、1年生は15.5分、2年生は32.0分、3年生は21.5分でした。生徒全体の通学時間の平均は何分ですか。
(20) いくつかの値からなるデータの中に極端にかけ離れた値があると、平均値はその値に強く影響を受けてしまうことがあります。
 Aさんは5つの正の整数を思い浮かべました。これらの数の平均値は2021です。このとき、Aさんが思い浮かべた可能性がある数
の最大値を求めなさい。ただし、5つの数に同じ数があってもよいものとします。
投稿日:2023.02.16

<関連動画>

重積分⑨-7【広義積分】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$D:1\leqq x,1\leqq y$である.
$\iint_D \dfrac{1}{x^2y^2} \ dx \ dy$

これを解け.
この動画を見る 

【数検2級】数学検定2級 問題13~問題15

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定2級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題13.2つのベクトルa,bのなす角が60゜で$\vert a\vert=6\vert b\vert=7$のとき、内積a・bを求めなさい。

問題14.第3項が1、第10項が22である等差数列について、次の問いに答えなさい。
   ① 初項を求めなさい。
   ② 公差を求めなさい。

問題15.関数$f(x)=x^3-5x+7$ について、次の問いに答えなさい。
   ① 導関数$f'(x)$を求めなさい。
   ② 微分係数$f'(2)$を求めなさい。
この動画を見る 

#数検準1級1次#5#不定積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x}{\sqrt{ x+1 }} dx$

出典:数検準1級
この動画を見る 

20年5月数検準1級1次試験(楕円)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#図形と方程式#円と方程式#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$
2点$A(0,-3),B(0,1)$から距離の和が6である楕円の方程式を求めよ.

20年5月数検準1級1次試験(楕円)過去問
この動画を見る 

微分方程式①【微分方程式の最初】(高専数学、数検1級解析)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
微分方程式
x:tの関数
$\frac{d^nx}{dt^n}+3\frac{d^3x}{dt^3}+2\frac{dx}{dt}+1=0$
(n>3)のとき
n階微分方程式
$\frac{dx}{dt}=-k(x-1):1階微分方程式\cdots*$
$x=(c-1)e^{-kt}+1$
*の解である

$左辺=\frac{dx}{dt}=-k(c-1)e^{-kt}$
$右辺=-k((c-1)e^{-kt}+1-1)$
$=-k(c-1)e^{-kt}$
∴左辺=右辺
c≠0
(1)$x=\frac{c}{t}$が解となる
微分方程式を求めよ
(2)曲線$x=ce^{2t}$が解曲線となる微分方程式を求めよ。
この動画を見る 
PAGE TOP