図形と計量 三角比の変換応用【NI・SHI・NOがていねいに解説】 - 質問解決D.B.(データベース)

図形と計量 三角比の変換応用【NI・SHI・NOがていねいに解説】

問題文全文(内容文):
次の式の値を簡単にせよ。
(1) $\sin 10°\cos 80°-\sin 100°\cos 170°$
(2) $\dfrac{1}{1+\sin^220°}-\tan^2110°$
(3) $\sin^2(180°-\theta)+\sin^2(90°-\theta)+\sin^2(90°+\theta)+cos^2(90°-\theta)$
チャプター:

0:00 オープニング
0:11 (1)考え方の確認
2:26 80°を超鋭角に直す
4:39 100°を超鋭角に直す
6:29 170°を超鋭角に直す
9:00 式を計算する
10:36 (2)問題、解き方確認
11:35 110°を超鋭角に直す
14:12 三角比の相互関係を駆使して計算
16:40 (3)問題確認
17:07 (180°-θ)をθに
18:52 (90°-θ)をθに
20:21 (90°+θ)をθに
21:56 あとは計算!

単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式の値を簡単にせよ。
(1) $\sin 10°\cos 80°-\sin 100°\cos 170°$
(2) $\dfrac{1}{1+\sin^220°}-\tan^2110°$
(3) $\sin^2(180°-\theta)+\sin^2(90°-\theta)+\sin^2(90°+\theta)+cos^2(90°-\theta)$
投稿日:2023.05.30

<関連動画>

知っていれば一瞬!絶対値の入った2次方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^2 - 4|x| - 12 = 0$を解け
この動画を見る 

【わかりやすく】2次関数の最大最小「範囲が動く場合」(高校数学Ⅰ)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
関数$y=x^2-2x+3(0 \leqq x \leqq a)$について、次の問いに答えよ。
ただし、$a \gt 0$
(1)最大値を求めよ
(2)最小値を求めよ
この動画を見る 

ガウス記号!これは取りたい!【早稲田大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
次の等式を満たす最大の整数aは、a=?である。
[$\displaystyle \frac{a}{2}$]+[$\displaystyle \frac{2a}{3}$]=a
但し、実数xに対して、$\lbrack x \rbrack$は、x以下の最大の整数を表す。
この動画を見る 

指数関数 2次関数 大分大

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=9^x+\dfrac{1}{9^x}-4a\left(3^x+\dfrac{1}{3^x}\right)$である.
$y$の最小値とそのときの$x$の値を$a$を用いて表せ.

2018大分大過去問
この動画を見る 

福田の数学〜明治大学2022年理工学部第2問〜平面図形の計量

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#英語(高校生)#平面図形#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#明治大学#数学(高校生)#明治大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ 平面上の長さ3の線分AB上に、AP=t\ (0 \lt t \lt 3)を満たす点Pをとる。\hspace{72pt}\\
中心をOとする半径1の円Oが、線分ABと点Pで接しているとする。\alpha=\angle OAB,\ \beta=\angle OBA\\
とおく。\tan\alpha,\ \tan\beta,\tan(\alpha+\beta)をtで表すと、\\
\tan\alpha=\boxed{\ \ あ\ \ },\ \tan\beta=\boxed{\ \ い\ \ },\ \tan(\alpha+\beta)=\boxed{\ \ う\ \ }\ である。\\
0 \lt \alpha+\beta \lt \frac{\pi}{2}であるようなtの範囲は\boxed{\ \ え\ \ }\ である。\\
tは\ \boxed{\ \ え\ \ }\ の範囲にあるとする。点A,\ Bから円Oに引いた接線の接点のうち、\\
PでないものをそれぞれQ,\ Rとすると、\angle QAB+\angle RBA \lt \piである。\\
したがって、線分AQのQの方への延長と線分BRのRの方への延長は交わり、\\
その交点をCとすると、円Oは三角形ABCの内接円である。\\
このとき、線分CQの長さをtで表すと\ \boxed{\ \ お\ \ }\ である。\\
また、tが\ \boxed{\ \ え\ \ }\ の範囲を動くとき、三角形ABCの面積Sの取り得る値の範囲は\boxed{\ \ か\ \ }である。
\end{eqnarray}

2022明治大学理工学部過去問
この動画を見る 
PAGE TOP