【理数個別の過去問解説】2021年度 神奈川大学給費生入試 文系数学 第3問解説 - 質問解決D.B.(データベース)

【理数個別の過去問解説】2021年度 神奈川大学給費生入試 文系数学 第3問解説

問題文全文(内容文):
座標平面上に3点О(0,0),A(0,4),B(8,0)がある。次の問いに答えよ。
(1) 3点A,B,Oを通る円Cの中心の座標を求めよ。
(2) 点Oを回転の中心として,円Cを反時計回りに60°回転させた円をC'とする。CとC'の共有点のうちOと異なる点の座標を求めよ。
チャプター:

0:00 オープニング
0:20 問題(1)の解き方
2:48 問題(2)の解き方:図形分析
5:21 問題(2)の解き方:計算作業
9:11 まとめ

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#神奈川大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
座標平面上に3点О(0,0),A(0,4),B(8,0)がある。次の問いに答えよ。
(1) 3点A,B,Oを通る円Cの中心の座標を求めよ。
(2) 点Oを回転の中心として,円Cを反時計回りに60°回転させた円をC'とする。CとC'の共有点のうちOと異なる点の座標を求めよ。
投稿日:2022.02.24

<関連動画>

面積比 2024専修大松戸

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
四角形ABCDは平行四辺形
△EHI:▱ABCD=?
*図は動画内参照
この動画を見る 

宇都宮大 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#宇都宮大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=1$
$a_{n}=-2S_{n}S_{n-1}$
$(n=2,3…)$

(1)
$a_{2},a_{3}$を求めよ

(2)
$0 \lt S_{n} \leqq 1$を示せ

(3)
$a_{n}$を求めよ

出典:2008年宇都宮大学 過去問
この動画を見る 

高知大 漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=0$
$n^2a_{n+1}=(n+1)^2a_n+2n+1$

$a_n$を求めよ

出典:1995年高知大学 過去問
この動画を見る 

名古屋大 根号の計算 4次方程式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$(\sqrt{ 9+2\sqrt{ 17 } }+\sqrt{ 9-2\sqrt{ 17 } })^2$を計算せよ


(2)
$a=\sqrt{ 13 }+\sqrt{ 9+2\sqrt{ 17 } }+\sqrt{ 9-2\sqrt{ 17 } }$を解にもつ整数係数の4次方程式を求めよ


(3)
8つの実数$\pm \sqrt{ 13 }\pm \sqrt{ 9+2\sqrt{ 17 } } \pm \sqrt{ 9-2\sqrt{ 17 } }$(複号任意)のうち(2)で求めた方程式の解


出典:1975年名古屋大学 過去問
この動画を見る 

上智大 連立漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#漸化式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
上智大学過去問題
$a_1 =0,b_1=6$
$a_{n+1}=\frac{a_n+b_n}{2}$,$b_{n+1}=a_n$
点Pの$(a_n,b_n)$はある直線上にある。その式は?
$n \to \infty$のときの$P_n$
この動画を見る 
PAGE TOP