大阪教育大 整式の剰余 複素数 Japanese university entrance exam questions - 質問解決D.B.(データベース)

大阪教育大 整式の剰余 複素数 Japanese university entrance exam questions

問題文全文(内容文):
(1)$\omega$を方程式$x^2+x+1-0$の解を1つとする.
$(\omega+1)^{12}$の値を求めよ.
(2)$(x+1)^{12}$を$x^3-1$で割った余りを求めよ.

大阪教育大過去問
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#複素数#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)$\omega$を方程式$x^2+x+1-0$の解を1つとする.
$(\omega+1)^{12}$の値を求めよ.
(2)$(x+1)^{12}$を$x^3-1$で割った余りを求めよ.

大阪教育大過去問
投稿日:2018.06.10

<関連動画>

東京理科大 指数方程式 実数解の条件 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#2次関数#式と証明#2次方程式と2次不等式#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'07東京理科大学過去問題
$9^x+9^{-x}-(a+1)(3^x+3^{-x})-2a^2+8a-4$
$=0$
(1)$a=-5$のとき、解け
(2)実数解をもつaの範囲
この動画を見る 

【数学Ⅰ/三角比】正弦定理を使って辺の比を求める問題

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$\triangle ABC$において、$\displaystyle \frac{\sin A}{4}=\displaystyle \frac{\sin B}{5}=\displaystyle \frac{\sin C}{2}$が成立しているとき、次の問いに答えよ。
(1)3辺の比$a:b:c$を求めよ。
(2)$\cos B$の値を求めよ。
この動画を見る 

【数Ⅰ】【データの分析】変量変換1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#データの分析#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
変量xのデータの平均値$\bar{x}$が35、分散$S_{x}^2$が16であるとする。この時、次の式によって得られる新しい変量yのデータについて、平均$\bar{y}$,分散$S_{y}^2$,標準偏差$S_{y}$を求めよ。
(1)$y=x-10$
(2)$y=3x$
(3)$y=-\frac{1}{2}x+6$

あるクラスの生徒を対象に100点満点の試験を行ったところ,平均値は68点,分散は36であった。得点調整のため,生徒全員の得点を2.5倍して,更に30点を加えたとき,得点調整後の平均値,分散,標準偏差を求めよ。
この動画を見る 

【数Ⅰ】2次関数:2次関数 y=-x²∔2ax (0≦x≦2)の最大値と最小値を求めよ。

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次関数 $y=-x^2+2ax(0\leqq x\leqq 2)$の最大値と最小値を求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題054〜大阪大学2017年度文系第1問〜放物線とx軸で囲まれた面積

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ $b,c$を実数、$q$を正の実数とする。放物線$P:y=-x^2+bx+c$の頂点の$y$座標が
$q$のとき、放物線$P$と$x$軸で囲まれた部分の面積$S$を$q$を用いて表せ。

2017大阪大学文系過去問
この動画を見る 
PAGE TOP