素数問題 - 質問解決D.B.(データベース)

素数問題

問題文全文(内容文):
$p,q,r$は異なる素数である.
$p^2=q^2+8r^2$を解け.
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p,q,r$は異なる素数である.
$p^2=q^2+8r^2$を解け.
投稿日:2021.08.30

<関連動画>

神戸大 複素数の連立方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z\omega=z^3=\omega^4$を満たす複素数の組$(z,\omega)$の個数を求めよ.

1999神戸大過去問
この動画を見る 

群馬大 複素数 数列の和

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$Z=\displaystyle \frac{-1+\sqrt{ 3 }i}{2}$

$Z+2Z^2+3Z^3+4Z^4+…+19Z^{19}+20Z^{20}$

出典:群馬大学 過去問
この動画を見る 

複素数 学習院大

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z$は複素数であり,$\dfrac{z-1-3i}{z-2}$が純虚数である.
$\vert z \vert$の最大値と最小値を求めよ.

学習院大過去問
この動画を見る 

岡山県立大 複素数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#岡山県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
岡山県立大学過去問題
$ω=\frac{-1+\sqrt3i}{2}$  n自然数
(1)$ω^{2005}$の値
(2)$ω^{n+1}+(ω+1)^{2n-1}=0$示せ
(3)整式$x^{n+1}+(x+1)^{2n-1}$は、$x^2+x+1$で割り切れる。示せ。
この動画を見る 

【数Ⅱ】虚数とは何か?【負×負=正となる理由、説明できる?】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
虚数に関して解説していきます.
この動画を見る 
PAGE TOP