【数学】中2-28 一次関数に慣れよう! - 質問解決D.B.(データベース)

【数学】中2-28 一次関数に慣れよう!

問題文全文(内容文):
一次関数といえば、y=①____

◎水槽に8cmの高さまで水が入っている。
この水槽に1分間に3cmの割合で水を入れる。
水を入れはじめてからx分後の底から水面までの高さをycmとするとき、下の表の空欄を埋めよう。
※表は動画内参照

⑦yをxの式で表すと?

◎長さ10cmのろうそくに火をつけると毎分0.5cmの割合で短くなる。
火をつけてからx分後のろうそくの長さをycmとする。
⑧yをxの式で表すと?
⑨6分後のろうそくの長さは?
⑩ろうそくの長さが3cmになるのは何分後?
⑪yの値の範囲は?
⑫xの値の範囲は?
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
一次関数といえば、y=①____

◎水槽に8cmの高さまで水が入っている。
この水槽に1分間に3cmの割合で水を入れる。
水を入れはじめてからx分後の底から水面までの高さをycmとするとき、下の表の空欄を埋めよう。
※表は動画内参照

⑦yをxの式で表すと?

◎長さ10cmのろうそくに火をつけると毎分0.5cmの割合で短くなる。
火をつけてからx分後のろうそくの長さをycmとする。
⑧yをxの式で表すと?
⑨6分後のろうそくの長さは?
⑩ろうそくの長さが3cmになるのは何分後?
⑪yの値の範囲は?
⑫xの値の範囲は?
投稿日:2013.07.17

<関連動画>

【中学数学】連立方程式:食塩水(2回操作)

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 理数個別チャンネル
問題文全文(内容文):
容器AとBにそれぞれx%、y%の食塩水が100gずつ入っています。容器AからBに食塩水を50g移し、よくかき混ぜた後、BからAに食塩水を50g移す。この操作を<1回>
として2回繰り返す。1回目が終わったときの容器Aの濃度が16%、2回目が終わったときの容器Ano濃度が14%であるとき、x、yの値をそれぞれ求めよ。
この動画を見る 

【高校受験対策】数学-規則性6

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
図1のような、縦$acm$、横$bcm$の長方形の紙がある。
この長方形の紙に対して次のような【操作】を行う。ただし$a$、$b$は正の整数であり、$a \lt b$とする。

【操作】
長方形の紙から短い方の辺を1辺とする正方形を切り取る。
残った四角形が正方形でない場合には、その四角形からさらに同様の方法で正方形を切り取り、残った四角形が正方形になるまで繰り返す。

例えば、図2のように、$a$=3、$ b$=4の長方形の紙に対して【操作】を行うと、1辺3cmの正方形の紙が1枚、1辺1cmの正方形の紙が3枚、全部で4枚の正方形ができる。
このとき次の問1、間2、間3、間4に答えなさい。


問1
$a$=4、$b$=6の長方形の紙に対して【操作】を行ったとき、できた正方形のうち最も小さい正方形の 1辺の長さを求めなさい。

問2
$n$を正の整数とする。$a=n$、$b=3n+1$の長方形の紙に対して【操作】を行ったとき、正方形は全部で何枚できるか。$n$を用いて表しなさい。

問3
ある長方形の紙に対して【操作】を行ったところ、3種類の大きさの異なる正方形が全部で4枚できた。
これらの正方形は、1辺の長さが長い順に、12cmの正方形が1枚、$x$cmの正方形が1枚、$y$cmの正方形が2枚であった。
このとき、$x$、$y$の連立方程式をつくり、$x$、$y$の値を求めなさい。ただし、 途中の計算も書くこと。

問4
$b=56$の長方形の紙に対して【操作】を行ったところ、3種類の大きさの異なる正方形が全で5枚できた。このとき考えられる$a$の値をすべて求めなさい。
この動画を見る 

気付けば一瞬!!算数 長方形の面積=❓

アイキャッチ画像
単元: #算数(中学受験)#数学(中学生)#中2数学#平面図形#角度と面積#三角形と四角形
指導講師: 数学を数楽に
問題文全文(内容文):
長方形の面積=?
*図は動画内参照
この動画を見る 

【高校受験対策】数学-図形18

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#円#平面図形#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①右の図1のような$\triangle ABC$があります。
点$D、E$はそれぞれ辺$AB、BC$上の点で、$\angle BDE =\angle ACB$です。
$AD = 2cm 、 DB = 8cm 、 BE = 6cm$のとき、$EC$の長さを求めなさい。

② 右の図2は、正方形$ABCD$と、おうぎ形$BAC$、おうぎ形$CBD$を組み合わせたものです。
点$E$は$\stackrel{\huge\frown}{AC}$と$\stackrel{\huge\frown}{BD}$との交点です。
正方形$ABCD$の1辺の長さが$12cm$のとき、$\stackrel{\huge\frown}{BE}$の長さを求めなさい。 ただし、円周率は$\pi$とします。

③右の図3のような四角形$ABCD$があり、対角線$AC$と対角線$BD$との交点を$E$とする。
線分$BE$上に、2点$B、E$と異なる点$F$をとり、直線$AF$と辺$BC$との交点を$G$とする。
四角形$ABCD$の面積が$50cm²$、$△AGC$の面積が$30cm$、
$BF:FD=3:4、AF:FG=2:1$であるとき、$△ACD$の面積は何$cm^2$か。

図は動画内参照
この動画を見る 

【数学】中2-36 一次関数の交点をだす① 基本編

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
関数の交点をだすなら①____を使おう!

◎交点の座標をだそう!
②$\begin{eqnarray}
\left\{
\begin{array}{l}
y = 3x-5 \\
x +2y =11
\end{array}
\right.
\end{eqnarray}$

③※動画内参照
この動画を見る 
PAGE TOP