問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
a-b=2\sqrt{ 3 }+1 \\
b+c=\displaystyle \frac{1}{\sqrt{ 3 }}-2 \\
a-c=\displaystyle \frac{4}{\sqrt{ 3 }}
\end{array}
\right.
\end{eqnarray}$
$a^2-c^2=?$
$\begin{eqnarray}
\left\{
\begin{array}{l}
a-b=2\sqrt{ 3 }+1 \\
b+c=\displaystyle \frac{1}{\sqrt{ 3 }}-2 \\
a-c=\displaystyle \frac{4}{\sqrt{ 3 }}
\end{array}
\right.
\end{eqnarray}$
$a^2-c^2=?$
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
数学を数楽に
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
a-b=2\sqrt{ 3 }+1 \\
b+c=\displaystyle \frac{1}{\sqrt{ 3 }}-2 \\
a-c=\displaystyle \frac{4}{\sqrt{ 3 }}
\end{array}
\right.
\end{eqnarray}$
$a^2-c^2=?$
$\begin{eqnarray}
\left\{
\begin{array}{l}
a-b=2\sqrt{ 3 }+1 \\
b+c=\displaystyle \frac{1}{\sqrt{ 3 }}-2 \\
a-c=\displaystyle \frac{4}{\sqrt{ 3 }}
\end{array}
\right.
\end{eqnarray}$
$a^2-c^2=?$
投稿日:2024.05.27





