福田の数学〜中央大学2023年経済学部第1問(4)〜対数の大小比較 - 質問解決D.B.(データベース)

福田の数学〜中央大学2023年経済学部第1問(4)〜対数の大小比較

問題文全文(内容文):
$\Large\boxed{1}$ (4)次の3つの数A, B, Cを小さい順に並べよ。
A=$\frac{1}{2}\log_2\frac{1}{2}$, B=$\frac{1}{3}\log_2\frac{1}{3}$, A=$\frac{1}{6}\log_2\frac{1}{6}$
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (4)次の3つの数A, B, Cを小さい順に並べよ。
A=$\frac{1}{2}\log_2\frac{1}{2}$, B=$\frac{1}{3}\log_2\frac{1}{3}$, A=$\frac{1}{6}\log_2\frac{1}{6}$
投稿日:2023.09.29

<関連動画>

福田の数学〜早稲田大学2023年人間科学部第2問〜対数不等式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 不等式
$\log_4(16-x^2-y^2)$≧$\displaystyle\frac{3}{2}$+2$\log_{16}(2-x)$
を満たす点P($x$,$y$)の中で、$x$座標と$y$座標がともに整数であるものは$\boxed{\ \ オ\ \ }$個ある。このうち、$x$座標が最小となる点は($\boxed{\ \ カ\ \ }$, $\boxed{\ \ キ\ \ }$)である。
この動画を見る 

【数学ネタ】近似値を信用しない人 #Shorts

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$2^{30}$の桁数を求めよ。
ただし、$\log_{10}2$=0.3010とする。
この動画を見る 

群馬大(医)

アイキャッチ画像
単元: #数A#数Ⅱ#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$log_{5832}n$が有理数で$\displaystyle \frac{1}{2} \lt log_{5832}n \lt 1$である自然数$n$を求めよ

出典:群馬大学医学部 過去問
この動画を見る 

三重大 対数と二次関数

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha \gt 0$とする.
$f(x)=\log_3 \left(-\dfrac{1}{2}x^2+\dfrac{1}{2}\alpha x+9 \right)$

$f(x)$が整数となる$x$が$0\leqq x\leqq \alpha$の範囲でちょうど$6$個あるような$\alpha$の範囲を求めよ.

三重大過去問
この動画を見る 

名古屋市立(医) 対数方程式 実数解 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#対数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'09名古屋市立大学過去問題
$(\log_2x)^3 - 6\log_{\sqrt2}x+k=0$
このxについての方程式が異なる2つの解をもつkの値と解を求めよ。
この動画を見る 
PAGE TOP