20年5月数学検定準1級1次試験(積分) - 質問解決D.B.(データベース)

20年5月数学検定準1級1次試験(積分)

問題文全文(内容文):
$\boxed{5}$
(1)$\displaystyle \int_{}^{}\dfrac{dx}{\sin 2x}$
(2)$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\dfrac{dx}{\sin 2x}$

20年5月数学検定準1級1次試験(積分)過去問
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{5}$
(1)$\displaystyle \int_{}^{}\dfrac{dx}{\sin 2x}$
(2)$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\dfrac{dx}{\sin 2x}$

20年5月数学検定準1級1次試験(積分)過去問
投稿日:2020.06.03

<関連動画>

数検準1級1次過去問【2020年12月】1番:因数定理

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣$x^3+(3-a)x^2+(4-a)x+2a+4=0$
が重解をもつような定数aの値をすべて求めよ。
この動画を見る 

練習問題9(数検準1級 教員採用試験 極限値からの区分求積法)【難】

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#その他#数学検定#数学検定準1級#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
限値からの区分求積法を解説していきます.
この動画を見る 

数検準1級 三項間漸化式 極限 高校数学

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数列#漸化式#数学検定#数学検定準1級#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$A \neq 0$ $a_{1}=1, a_{2}=2A$
$a_{n+2}=2Aa_{n+1}-A^2a_{n}$
一般項を求めよ。


(2)
$\displaystyle \lim_{ x \to \infty }x^2(1=\cos^3 \displaystyle \frac{1}{x})$
極限値を求めよ。

出典:数学検定準1級 過去問
この動画を見る 

#12数検1級1次過去問 極限(マクローリン展開)Σn^2/n!

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#関数と極限#数列の極限#関数の極限#数学検定#数学検定準1級#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$
$\displaystyle \sum_{n=1}^{\infty}\dfrac{n^2}{n!}$を求めよ.
この動画を見る 

数検準1級1次(3番 ベクトル)

単元: #数学検定・数学甲子園・数学オリンピック等#平面上のベクトル#数学検定#数学検定準1級#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}$ $\vert \overrightarrow{ a }\vert=\vert \overrightarrow{ b }\vert,\vert \overrightarrow{ c }\vert=1$
$\vert \overrightarrow{ a }\vert \perp \vert \overrightarrow{ b }\vert,\vert \overrightarrow{ b }\vert \perp \vert \overrightarrow{ c }\vert,\vert \overrightarrow{ c }\vert \perp \vert \overrightarrow{ a}\vert$のとき,

$\vert \overrightarrow{ x }\vert=\vert \overrightarrow{ a }\vert+2\vert \overrightarrow{ b }\vert+3\vert \overrightarrow{ c }\vert$
$\vert \overrightarrow{ y }\vert=3\vert \overrightarrow{ a }\vert+\vert \overrightarrow{ b }\vert-2\vert \overrightarrow{ c }\vert$
のなす角$\theta$に対して$\cos\theta$の値を求めよ.
この動画を見る 
PAGE TOP