【受験対策】 数学-文章題① - 質問解決D.B.(データベース)

【受験対策】  数学-文章題①

問題文全文(内容文):
①2つの数a.bはいずれも絶対値が2以下の整数で、『$ab \lt 0 , a+b \gt 0$』が 成り立っています。40-3bの値が最大となるとき、その値は?

②$(3+5\sqrt{ 2 })(a+15\sqrt{ 2 })$を計算したときの答えが整数となるような整数aを求めよう。

③xは27より小さい自然数です。
$27^2-x^2$の値を求めると、一の位の数字が0になりました。
これを満たすxをすべて書こう。

④りんごが9個、なしが3個あります。
これらの果物を3人で分けることにしました。
3人とも、果物の個数の合計が4個ずつになるように分ける分け方は、何通り?
単元: #数A#整数の性質#場合の数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①2つの数a.bはいずれも絶対値が2以下の整数で、『$ab \lt 0 , a+b \gt 0$』が 成り立っています。40-3bの値が最大となるとき、その値は?

②$(3+5\sqrt{ 2 })(a+15\sqrt{ 2 })$を計算したときの答えが整数となるような整数aを求めよう。

③xは27より小さい自然数です。
$27^2-x^2$の値を求めると、一の位の数字が0になりました。
これを満たすxをすべて書こう。

④りんごが9個、なしが3個あります。
これらの果物を3人で分けることにしました。
3人とも、果物の個数の合計が4個ずつになるように分ける分け方は、何通り?
投稿日:2014.01.11

<関連動画>

福田のおもしろ数学213〜コンビネーション200から100までを割り切る2桁の最大の素数

アイキャッチ画像
単元: #数A#場合の数と確率#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$_{200} \textrm{C}_{100}$を割り切る2桁の最大の素数は?
この動画を見る 

福田の数学〜2023年共通テスト速報〜数学IA第3問場合の数

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
第3問
番号によって区別された複数の球が、何本かのひもでつながれている。ただし、各ひもはその両端で二つの球をつなぐものとする。次の条件を満たす球の塗り分け方(以下、球の塗り方)を考える。
【条件】
・それぞれの球を、用意した5色(赤、青、黄、緑、紫)のうちのいずれか1色で塗る。
・1本のひもでつながれた二つの球は異なる色になるようにする。
・同じ色を何回使ってもよく、また使わない色があってもよい。
例えば図A(※動画参照)では、三つの球が2本のひもでつながれている。この三つの球を塗るとき、球1の塗り方が5通りあり、球1を塗った後、球2の塗り方は4通りあり、さらに球3の塗り方は4通りある。したがって、球の塗り方の総数は80である。
(1)図B(※動画参照)において、球の塗り方は$\boxed{\ \ アイウ\ \ }$通りある。
(2)図C(※動画参照)において、球の塗り方は$\boxed{\ \ エオ\ \ }$通りある。
(3)図D(※動画参照)における球の塗り方のうち、赤をちょうど2回使う塗り方は$\boxed{\ \ カキ\ \ }$通りある。
(4)図E(※動画参照)における球の塗り方のうち、赤をちょうど3回使い、かつ青をちょうど2回使う塗り方は$\boxed{\ \ クケ\ \ }$通りある。
(5)図Dにおいて、球の塗り方の総数を求める。
そのために、次の構想を立てる。
【構想】
図Dと図Fを比較する。

図Fでは球3と球4が同色になる球の塗り方が可能であるため、図Dよりも図Fの球の塗り方の総数の方が大きい。
図Fにおける球の塗り方は、図Bにおける球の塗り方と同じであるため、全部で$\boxed{\ \ アイウ\ \ }$通りある。そのうち球3と球4が同色になる球の塗り方の総数と一致する図として、後の⓪~④のうち、正しいものは$\boxed{\boxed{\ \ コ\ \ }}$である。したがって、図Dにおける球の塗り方は$\boxed{\ \ サシス\ \ }$通りある。
$\boxed{\boxed{\ \ コ\ \ }}$の解答群
(解答群は動画参照)
(6)図Gにおいて、球の塗り方は$\boxed{\ \ セソタチ\ \ }$通りある。

2023共通テスト過去問
この動画を見る 

【高校数学】  数A-12  順列⑥ ・ じゅず順列編

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①8クラスの学級委員長が、円形の机に座るとき、直積の方法は何通り?

②先生1人、男子2人、女子3人が円形のテーブルに座るとき、男子2人が隣り合う座り方は何通り?

③色の異なる5個の玉を糸でつないで首飾りをつくる方法は何通り?
この動画を見る 

早稲田(理)超簡単 場合の数・漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1,2,3$を$n$個並べて$n$桁の数を作る。
1が奇数個使われている数を$a_{n}$個
1が偶数個使われている数を$b_{n}$個
(0個を含む)

(1)
$a_{n+1},b_{n+1}$を$a_{n},b_{n}$を用いて表せ

(2)
$a_{n},b_{n}$を求めよ

出典:1997年早稲田大学 理工学術院 過去問
この動画を見る 

【数A】場合の数:コンビネーションを使った式の証明

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
コンビネーションの式の証明です
コンビネーションの使い方は大丈夫??
この動画を見る 
PAGE TOP