#大学入試問題#853「ファンタスティックな解答求む」 #大阪工業大学(2023) #定積分 - 質問解決D.B.(データベース)

#大学入試問題#853「ファンタスティックな解答求む」 #大阪工業大学(2023) #定積分

問題文全文(内容文):
$\displaystyle \int_{1}^{4} \displaystyle \frac{x-1}{2x-\sqrt{ x }} dx$

出典:2023年大阪工業大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#大阪工業大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{4} \displaystyle \frac{x-1}{2x-\sqrt{ x }} dx$

出典:2023年大阪工業大学 入試問題
投稿日:2024.06.18

<関連動画>

【高校数学】東北大学2024年の積分の問題をその場で解説しながら解いてみた!毎日積分100日目~47都道府県制覇への道~【㊸宮城】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【東北大学 2024】
$xyz$空間内の$xy$平面上にある円$C:x^2+y^2=1$および円板$D:x²+y²≦1$を考える。$D$を底面とし点$P(0,0,1)$を頂点とする円錐を$K$とする。$A(0,-1,0),B(0,1,0)$とする。$xyz$空間内の平面$H:z=x$を考える。すなわち、$H$は$xz$平面上の直線$z=x$と線分$AB$をともに含む平面である。$K$の側面と$H$の交わりとしてできる曲線を$E$とする。$\displaystyle -\frac{π}{2}≦θ≦\frac{π}{2}$を満たす実数$θ$に対し、円$C$上の点$Q(cosθ,sinθ,0)$をとり、線分$PQ$と$E$の共有点を$R$とする。
(1) 線分$PR$の長さを$r(θ)$とおく。$r(θ)$を$θ$を用いて表せ。
(2)円錐$K$の側面のうち、曲線$E$の点$A$から点$R$までを結ぶ部分、線分$PA$,および線分$PR$により囲まれた部分の面積を$S(θ)$とおく。$θ$と実数$h$が条件$\displaystyle 0≦θ<θ+h≦\frac{π}{2}$を満たすとき、次の不等式が成り立つことを示せ。
$\displaystyle \frac{h\{{r(θ)}\}^2}{2\sqrt{2}}≦S(θ+h)-S(θ)≦\frac{h\{{r(θ+h)\}}^2}{2\sqrt{2}}$
(3) 円錐$K$の側面のうち、円$C$の$x≧0$の部分と曲線$E$により囲まれた部分の面積を$T$とおく。$T$を求めよ。必要であれば$\displaystyle tan\frac{θ}{2}=u$とおく置換積分を用いてもよい。
この動画を見る 

2024早稲田(教育)循環小数を2進法で表せ

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{4}{9}$を2進法の循環小数で表せ

出典:2024年早稲田大学教育学部過去問
この動画を見る 

横浜国立大 場合の数・数列の和 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
横浜国立大学過去問題
1~nの整数から異なる2つの整数をとり出し、その2つの整数の和をS、積をtとする。
(1)とり出し方全てを考えたときのSの総和
(2)とり出し方全てを考えたときのtの総和
この動画を見る 

帝京大(医)漸化式 合同式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n=(1+\sqrt{ 2 })^n+(1-\sqrt{ 2 })^n$
$a_n$は整数であることを示せ
$a_{100}$を3で割った余り

出典:2005年帝京大学医学部 過去問
この動画を見る 

大学入試問題#664「三角関数or複素平面」 藤田医科大学(2023) 2024年入学

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \sum_{k=1}^4 \cos\displaystyle \frac{2k}{9}\pi$の値を求めよ

出典:2023年藤田医科大学 入試問題
この動画を見る 
PAGE TOP