【中1数学】【方程式】最難関!方程式の文章題!元大手塾講師が教える!中学数学基礎講座 第24回 方程式の利用③ - 質問解決D.B.(データベース)

【中1数学】【方程式】最難関!方程式の文章題!元大手塾講師が教える!中学数学基礎講座 第24回 方程式の利用③

問題文全文(内容文):
・20km離れたP.Q両地点があり.Aさんは,P地点を時速4kmでQ地点に向かって出発します。Bさんは.Aさんが出発して2時間後にQ地点を出発し.時速5kmでP地点に向かいます。2人が出会うのは,Bさんが出発してから何時間何分後でしょうか。

・15km離れたP.Q両地点があり.Aさんは,P地点を時速3kmでQ地点に向かって出発します。Bさんは.Aさんが出発して2時間後にQ地点を出発し.時速5kmでP地点に向かいます。2人が出会うのは,Bさんが出発してから何時間何分後でしょうか。

・長イスを何脚か並べました。集まった人たちが、長イス1脚に4人ずつ座ると
2人が座れず、5人ずつ座ると1人だけ座った長イスが1脚できました。
並べた長イスは何脚でしょうか。

・長イスを何脚か並べました。集まった人たちが、長イス1脚に3人ずつ座ると
2人が座れず、5人ずつ座ると1人だけ座った長イスが1脚できました。
並べた長イスは何脚でしょうか。

・現在、太郎さんは12歳、父は42歳です。父の年齢が、太郎さんの年齢の2.5倍になるのは何年後ですか。

・現在、太郎さんは8歳、父は33歳です。父の年齢が、太郎さんの年齢の2倍になるのは何年後ですか。
チャプター:

0:00 導入
0:35 先に出発したAさんをBさんが後から追いかける 解き方解説
6:52 先に出発したAさんをBさんが後から追いかける 例題
8:37 長椅子に異なる人数が座った時の差から長椅子の数を求める 解き方解説
12:47 長椅子に異なる人数が座った時の差から長椅子の数を求める 例題
15:32 父の年齢が太郎さんの2.5倍になる年数を求める 解き方解説
18:36 父の年齢が太郎さんの2倍になる年数を求める 例題
20:22 エンディング

単元: #算数(中学受験)#和差算・植木算・分配算・倍数算・年齢算・相当算・つるかめ算
指導講師: こばちゃん塾
問題文全文(内容文):
・20km離れたP.Q両地点があり.Aさんは,P地点を時速4kmでQ地点に向かって出発します。Bさんは.Aさんが出発して2時間後にQ地点を出発し.時速5kmでP地点に向かいます。2人が出会うのは,Bさんが出発してから何時間何分後でしょうか。

・15km離れたP.Q両地点があり.Aさんは,P地点を時速3kmでQ地点に向かって出発します。Bさんは.Aさんが出発して2時間後にQ地点を出発し.時速5kmでP地点に向かいます。2人が出会うのは,Bさんが出発してから何時間何分後でしょうか。

・長イスを何脚か並べました。集まった人たちが、長イス1脚に4人ずつ座ると
2人が座れず、5人ずつ座ると1人だけ座った長イスが1脚できました。
並べた長イスは何脚でしょうか。

・長イスを何脚か並べました。集まった人たちが、長イス1脚に3人ずつ座ると
2人が座れず、5人ずつ座ると1人だけ座った長イスが1脚できました。
並べた長イスは何脚でしょうか。

・現在、太郎さんは12歳、父は42歳です。父の年齢が、太郎さんの年齢の2.5倍になるのは何年後ですか。

・現在、太郎さんは8歳、父は33歳です。父の年齢が、太郎さんの年齢の2倍になるのは何年後ですか。
投稿日:2020.03.03

<関連動画>

【算数練習】171(”大人”は頭の体操)

アイキャッチ画像
単元: #算数(中学受験)#平面図形#角度と面積
指導講師: 算数・数学ちゃんねる
問題文全文(内容文):
問題文
二等辺三角形の底角をxと置く
※図は動画内参照
角Xは何度?
この動画を見る 

【中学受験問題に挑戦】20 (”大人”は頭の体操) 時計の針の角度

アイキャッチ画像
単元: #算数(中学受験)#速さ#点の移動・時計算
指導講師: 算数・数学ちゃんねる
問題文全文(内容文):
時計の針の角度の問題を解説していきます。
6時6分は何度?
この動画を見る 

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#規則性(周期算・方陣算・数列・日暦算・N進法)
指導講師: 重吉
問題文全文(内容文):
重要問題11

(1)
3で割ると2あまる数はあまりの▭から▭ずつ増えていく。
同様に、5で割ると1あまる数は、あまりの▭から▭ずつ増えていく。
この両方の数列に現れる最初の数字は▭であり、その後は3と5の最小公倍数である15増えるごとに同じ数字が両方の数列に現れる。
よって、両方の数列に現れる5番目の数字は、1番最初の11に15を4回足せば良いので▭である。

(2)
(1)の▭番目の数字を求める式は、▭である。
この式の答えは3桁の最大の整数999になると考えると、▭に当てはまる数字は次のように計算できる。
▭は整数であり、上の式の答えは▭よりも小さな整数なので、▭を上の式に当てはめると以下のように計算できる。

重要問題12

6で割ると2あまる数は、あまりの▭から▭ずつ増えていく。
同様に、14で割ると10あまる数は、あまりの▭から▭ずつ増えていく。
この両方の数列に現れる最初の数字は38であり、
その後は6と14の最小公倍数である▭増えるごとに同じ数字が両方の数列に現れる。
よって、▭番目の数字を求める式は、▭である。
この式の答えが900になると考えると、▭にあてはまる数を求められる。
▭は整数なので、▭と▭を上の式に当てはめると、
よって、900に近いのは、▭である。
この動画を見る 

【小6 算数】  小6-29  比例の性質

アイキャッチ画像
単元: #算数(中学受験)#文章題#単位・比と割合・比例・反比例
指導講師: とある男が授業をしてみた
問題文全文(内容文):
比例は、xが2倍、3倍になると、yが①________になる!

◎分速4kmで走る新幹線について求めよう!

②、③は動画内の表を見て穴埋めしよう。

④xとyの関係を式にすると?

⑤8.5分に進む道のりは?

⑥90km進むのにかかる時間は?
この動画を見る 

【頭の固い人】には解けない!?正方形の問題3選!最後にとんでもない事実が判明!あなたは分かる?【毎日1題中学受験算数83】

アイキャッチ画像
単元: #算数(中学受験)#平面図形#角度と面積
指導講師: こばちゃん塾
問題文全文(内容文):
1⃣上図の正方形1つの面積は?

2⃣小さい正方形1つの面積は?

3⃣半径5㎝の円に左図のように正方形が配置されている。
正方形1つの面積は?

*図は動画内参照
この動画を見る 
PAGE TOP