問題文全文(内容文):
不等式
$|\displaystyle \frac{2024n}{1-46n}+44| \lt \displaystyle \frac{1}{2025}$を満たす正の整数$n$の最小値を求めよ。
出典:2024年早稲田大学商学部 入試問題
不等式
$|\displaystyle \frac{2024n}{1-46n}+44| \lt \displaystyle \frac{1}{2025}$を満たす正の整数$n$の最小値を求めよ。
出典:2024年早稲田大学商学部 入試問題
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
不等式
$|\displaystyle \frac{2024n}{1-46n}+44| \lt \displaystyle \frac{1}{2025}$を満たす正の整数$n$の最小値を求めよ。
出典:2024年早稲田大学商学部 入試問題
不等式
$|\displaystyle \frac{2024n}{1-46n}+44| \lt \displaystyle \frac{1}{2025}$を満たす正の整数$n$の最小値を求めよ。
出典:2024年早稲田大学商学部 入試問題
投稿日:2024.04.08