大学入試問題#757「綺麗な基本問題」 東京理科大学(2001) #積分方程式 - 質問解決D.B.(データベース)

大学入試問題#757「綺麗な基本問題」 東京理科大学(2001) #積分方程式

問題文全文(内容文):
関数$f(x)=1+\displaystyle \frac{1}{2}ce^{-x}$において、定数$c$は
$c=\displaystyle \int_{0}^{\frac{\pi}{2}} e^t f(t)\sin\ t\ dt$を満たす。
このとき、$c$の値を求めよ。

出典:2001年東京理科大学工学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
関数$f(x)=1+\displaystyle \frac{1}{2}ce^{-x}$において、定数$c$は
$c=\displaystyle \int_{0}^{\frac{\pi}{2}} e^t f(t)\sin\ t\ dt$を満たす。
このとき、$c$の値を求めよ。

出典:2001年東京理科大学工学部 入試問題
投稿日:2024.03.07

<関連動画>

順天堂・御茶ノ水女子 複素数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#順天堂大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
順天堂大学過去問題
1⃣
$α^4+α^3+α^2+α+1=0$
$α^6(α^7+1)(α+1)$の値

2⃣
$\sqrt3 + i +z$の絶対値を最大にする複素数Z
ただし|Z|=1
この動画を見る 

大学入試問題#603「もう飽きた?」 千葉大学(1989) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$P_n=\sqrt[ n ]{ \displaystyle \frac{(3n)!}{(2n)!} }$とおく
(1)$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{P_n}{n}$を求めよ

(2)$\displaystyle \lim_{ n \to \infty } (\displaystyle \frac{n+2}{n})^{P_n}$を求めよ

出典:1989年千葉大学 入試問題
この動画を見る 

福田の数学〜東京慈恵会医科大学2022年医学部第4問〜複素数平面と図形

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#平面上の曲線#複素数平面#方べきの定理と2つの円の関係#図形と方程式#点と直線#2次曲線#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
複素数平面上の点zが原点を中心とする半径1の円周上を動くとき、$w=z+\frac{2}{z}$
で表される点wの描く図形をCとする。Cで囲まれた部分の内部(ただし、
境界線は含まない)に定点$\alpha$をとり、$\alpha$を通る直線lがCと交わる2点を$\beta_1,\beta_2$とする。
(1)$w=u+vi$(u,vは実数)とするとき、uとvの間に成り立つ関係式を求めよ。
(2)点$\alpha$を固定したままlを動かすとき、積$|\beta_1-\alpha|・|\beta_2-\alpha|$が最大となる
ようなlはどのような直線のときか調べよ。

2022東京慈恵会医科大学医学部過去問
この動画を見る 

大学入試問題#390「一瞬aが実数でドキッとするが・・・」 慶應義塾大学2011 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a \gt 0$
$\displaystyle \int_{0}^{a} x^2(1-\displaystyle \frac{x}{a})^a dx$

出典:2011年慶應義塾大学 入試問題
この動画を見る 

福田の数学〜立教大学2023年理学部第1問(2)〜極値をとる条件

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)関数$f(t)$=$a\cos^3t$+$\cos^2t$が$t$=$\frac{\pi}{4}$で極値をとるとき、$a$=$\boxed{\ \ イ\ \ }$である。
この動画を見る 
PAGE TOP