#宮崎大学 2020年 #定積分 #Shorts - 質問解決D.B.(データベース)

#宮崎大学 2020年 #定積分 #Shorts

問題文全文(内容文):
$\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (3x+2)\sin\ x\ dx$

出典:2020年宮崎大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (3x+2)\sin\ x\ dx$

出典:2020年宮崎大学
投稿日:2024.03.12

<関連動画>

数学「大学入試良問集」【8−2 三角関数の解の個数】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#島根大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(\theta)=a(\sqrt{ 3 }\ \sin\theta+\cos\theta)+\sin\theta(\sin\theta+\sqrt{ 3 }\ \cos\theta)$について、次の各問いに答えよ。
ただし、$0 \leqq x \leqq \pi$とする。
(1)$t=\sqrt{ 3 }\ \sin\theta+\cos\theta$のグラフをかけ。
(2)$\sin\theta(\sin\theta+\sqrt{ 3 }\ \cos\theta)$を$t$を用いて表せ。
(3)方程式$f(\theta)=0$が相異なる3つの解をもつときの$a$の値の範囲を求めよ。
この動画を見る 

お茶の水女子大 漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#お茶の水女子大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3x^2-6x+2=0$の2つの解を$\alpha,\beta$
$A_{n}=(\alpha^{-n}+\beta^{-n})(\alpha+\beta)^n$

(1)
$A_{1},A_{2}$の値を求めよ

(2)
$A_{n}$はすべての自然数$n$について整数であることを示せ

出典:2009年お茶の水女子大学 過去問
この動画を見る 

福田の数学〜浜松医科大学2022年医学部第1問〜媒介変数表示で表された曲線の長さと接線の傾きと体積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#浜松医科大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
媒介変数$t\ (t \geqq 0)$に対して、$x=\frac{4}{\sqrt3}t^{\frac{3}{2}},y=2t$で表される曲線C上に
点$P_1$と$P_2$がある。原点から点$P_1$までの曲線の長さは$\frac{28}{9}$であり、点$P_2$における曲線C
の接線の傾きは$\frac{1}{3}$である。以下の問いに答えよ。
(1)点$P_1$の座標$(x_1,y_1)$を求めよ。
(2)点$P_2$の座標$(x_2,y_2)$を求めよ。
(3)曲線Cとy軸、および2直線$y=y_1,y=y_2$で囲まれた図形を、y軸の周りに1回転
してできる回転体を考える。この回転体の体積を求めよ。

2022浜松医科大学医学部過去問
この動画を見る 

福田の数学〜一橋大学2023年文系第1問〜コンビネーションの等式を満たす自然数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ nを2以上20以下の整数、kを1以上n-1以下の整数とする。
${}_{n+2}C_{k+1}$=2(${}_nC_{k-1}$+${}_nC_{k+1}$)
が成り立つような整数の組(n, k)を求めよ。

2023一橋大学文系過去問
この動画を見る 

#千葉大学2016#定積分#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
以下の定積分を解け。
$\displaystyle \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cos^3x$ $dx$

出典:2016年千葉大学
この動画を見る 
PAGE TOP