問題文全文(内容文):
$b_1=\displaystyle \frac{1}{2},$
$b_{n+1}=-3b_n+\displaystyle \frac{2n^2-6n-17}{n^2+3n+2}$を満たす数列$\{b_n\}$の一般項を求めよ。
出典:2009年東京理科大学全学部 入試問題
$b_1=\displaystyle \frac{1}{2},$
$b_{n+1}=-3b_n+\displaystyle \frac{2n^2-6n-17}{n^2+3n+2}$を満たす数列$\{b_n\}$の一般項を求めよ。
出典:2009年東京理科大学全学部 入試問題
チャプター:
00:00 問題紹介
06:30 作成した解答①
06:40 作成した解答②
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$b_1=\displaystyle \frac{1}{2},$
$b_{n+1}=-3b_n+\displaystyle \frac{2n^2-6n-17}{n^2+3n+2}$を満たす数列$\{b_n\}$の一般項を求めよ。
出典:2009年東京理科大学全学部 入試問題
$b_1=\displaystyle \frac{1}{2},$
$b_{n+1}=-3b_n+\displaystyle \frac{2n^2-6n-17}{n^2+3n+2}$を満たす数列$\{b_n\}$の一般項を求めよ。
出典:2009年東京理科大学全学部 入試問題
投稿日:2024.02.20