#東海大学医学部(2019) #極限 #Shorts - 質問解決D.B.(データベース)

#東海大学医学部(2019) #極限 #Shorts

問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{\tan\ x-\sin\ x}{x^3}$

出典:2019年東海大学医学部
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{\tan\ x-\sin\ x}{x^3}$

出典:2019年東海大学医学部
投稿日:2024.02.26

<関連動画>

【理数個別の過去問解説】2021年度東京大学 数学 理科第3問(2)解説

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
東京大学 2021年理科第3問(2)それぞれの項で分けて丁寧に積分せよ
関数
$f(x)=\dfrac{x}{x²+3}$
に対して、$y=f(x)$のグラフをCとする。点A($1,f(1)$)におけるCの接線を
$l:y=g(x)$
とする。
(1)Cとlの共有点でAと異なるものがただ1つ存在することを示し、その点のx座標を求めよ。
(2)(1)で求めた共有点のx座標をαとする。定積分
$\displaystyle \int_{\alpha}^1{f(x)-g(x)}^2 dx$
を計算せよ。
この動画を見る 

静岡大 数学的帰納法 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#数列#数学的帰納法#静岡大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
静岡大学過去問題
n自然数
(1)$4^{n+1}+5^{2n-1}$は21で割り切れることを証明
(2)次の条件を満たす定数でない多項式f(x)を推定し、その推定が正しいことを証明せよ。
(a)f(4)=21
(b)すべての自然数nに対し$x^{n+1}+(x+1)^{2n-1}$はf(x)で割り切れる。
この動画を見る 

(誘導あり)ゴリゴリの計算問題【大阪大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$f(x)=2\log (1+e^x)-x-\log 2$
のとき


$\displaystyle \int_{0}^{ \log 2 } (x-\log 2)e^{-f(x)} dx$

を求めよ

大阪大過去問
この動画を見る 

群馬大 複素数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#平面上の曲線#複素数#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#群馬大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z=\displaystyle \frac{\sqrt{ 3 }-1}{2}+\displaystyle \frac{\sqrt{ 3 }+1}{2}i$

(1)
$\displaystyle \frac{z}{1+i}$を$a+bi$の形で表せ

(2)
$z$を極形式で表せ

(3)
$z^{12}$を求めよ

出典:2004年国立大学法人群馬大学 過去問
この動画を見る 

大学入試問題#866「まあ、なんとかなるわな」 #東京女子医科大学(2005) #式変形

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$(1-\sqrt[ 3 ]{ 2 }+\sqrt[ 3 ]{ 4 })^8$を計算せよ

出典:2005年東京女子医科大学
この動画を見る 
PAGE TOP