福田の数学〜千葉大学2022年理系第7問〜不定方程式の自然数解と漸化式で与えられた数列 - 質問解決D.B.(データベース)

福田の数学〜千葉大学2022年理系第7問〜不定方程式の自然数解と漸化式で与えられた数列

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{7}}\ x,yについての方程式\\
x^2-6xy+y^2=9  \ldots\ldots(*)\\
に関する次の問いに答えよ。\\
(1)x,yがともに正の整数であるような(*)の解のうち、yが最小であるものを\\
求めよ。\\
(2)数列a_1,a_2,a_3,\ldotsが漸化式\\
a_{n+2}-6a_{n+1}+a_n=0  (n=1,2,3,\ldots)\\
を満たすとする。このとき、(x,y)=(a_{n+1},a_n)が(*)を満たすならば、\\
(x,y)=(a_{n+2},a_{n+1})も(*)を満たすことを示せ。\\
(3)(*)の整数解(x,y)は無数に存在することを示せ。
\end{eqnarray}
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{7}}\ x,yについての方程式\\
x^2-6xy+y^2=9  \ldots\ldots(*)\\
に関する次の問いに答えよ。\\
(1)x,yがともに正の整数であるような(*)の解のうち、yが最小であるものを\\
求めよ。\\
(2)数列a_1,a_2,a_3,\ldotsが漸化式\\
a_{n+2}-6a_{n+1}+a_n=0  (n=1,2,3,\ldots)\\
を満たすとする。このとき、(x,y)=(a_{n+1},a_n)が(*)を満たすならば、\\
(x,y)=(a_{n+2},a_{n+1})も(*)を満たすことを示せ。\\
(3)(*)の整数解(x,y)は無数に存在することを示せ。
\end{eqnarray}
投稿日:2022.05.19

<関連動画>

福田の数学・入試問題解説〜東北大学2022年理系第1問〜不定方程式の整数解の個数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{1}}}\ Kを3より大きい奇数とし、l+m+n=Kを満たす正の奇数の組(l,m,n)\\
の個数Nを考える。ただし、例えば、K=5のとき、(l,m,n)=(1,1,3)\\
と(l,m,n)=(1,3,1)とは異なる組とみなす。\\
(1)K=99のとき、Nを求めよ。\\
(2)K=99のとき、l,m,nの中に同じ奇数を2つ以上含む組(l,m,n)の個数を\\
求めよ。\\
(3)N \gt Kを満たす最小のKを求めよ。
\end{eqnarray}
この動画を見る 

【理数個別の過去問解説】2004年度東京大学 数学 理系第1問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
xy平面上の放物線y=x²上の3点P,Q,Rが次の条件をみたしている。
△PQRは一辺の長さがaの正三角形であり、点P,Qを通る直線の傾きは√2である。
このとき、aの値を求めよ。
この動画を見る 

福田の数学〜立教大学2022年経済学部第1問(1)〜対称式の値の計算

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
x+y=2,1/x+1/y=-1/2のとき、|x-y|の値を求めよ
この動画を見る 

【理数個別の過去問解説】1999年度大阪大学 数学 理系前期第5問解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
一片の長さが4の正方形の紙の表を、図のように一片の長さが1のマス目に16個に区切る。その紙を2枚用意し、AとBの2人に渡す。AとBはそれぞれ渡された紙の2個のマス目を無作為に選んで塗りつぶす。塗りつぶした後、両方の紙を表を上にしてどのように重ね合わせても、塗りつぶされたマス目がどれも重ならない確率を求めよう。ただし、2枚の紙を重ね合わせるときは、それぞれの紙を回転させてもよいが、紙の四隅は合わせることとする。
この動画を見る 

福田の数学〜慶應義塾大学2022年環境情報学部第1問〜4つの音で作るチャイムの種類

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ ある学校では、ドミソシの4つの音を4つ組み合わせてチャイムを作り、\\
授業の開始・終了などを知らせるために鳴らしている。\\
チャイムは、図1(※動画参照)のように4×4の格子状に並んだ16個のボタン\\
を押すことによって作ることができる。縦方向は音の種類を表し、横方向は時間\\
を表している。例えば、ドミソシという音を1つずつ、\\
順番に鳴らすチャイムを作るには、図2(※動画参照)のようにボタンを押せばよい。\\
ただし、鳴らすことのできる音の数は縦1列あたり1つだけであり、\\
音を鳴らさない無音は許されず、それぞれの例で必ず1つの音を選ばなければならないとする。\\
(1)4つの音を1回ずつ鳴らすことを考えた場合、チャイムの種類は\ \boxed{\ \ アイウ\ \ }\ 通り。\\
(2)(1)に加えて、同じ音を連続して2回繰り返すことを1度だけしてもかまわない(例:ドミミソ)\\
とした場合、\\
チャイムの種類は合わせて\ \boxed{\ \ エオカ\ \ }\ 通りになる。\\
ただし、連続する音以外は高々1回までしか鳴らすことはできず、\\
それらは連続する音とは異ならなければならないものとする。\\
(3)(1)と(2)に加えて、同じ音を連続して4回繰り返すチャイムを許すと、\\
可能なチャイムの種類は合わせて\ \boxed{\ \ キクケ\ \ }\ 通りになる。\\
\end{eqnarray}
この動画を見る 
PAGE TOP