福田の入試問題解説〜東京大学2022年理系第5問〜立体の体積 - 質問解決D.B.(データベース)

福田の入試問題解説〜東京大学2022年理系第5問〜立体の体積

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}}\ 座標空間内の点A(0,0,2)と点B(1,0,1)を結ぶ線分ABをz軸の周りに\\
1回転させて得られる局面をSとする。S上の点Pとxy平面上の点QがPQ=2を\\
満たしながら動くとき、線分PQの中点Mが通過しうる範囲をKとする。\\
Kの体積を求めよ。
\end{eqnarray}
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}}\ 座標空間内の点A(0,0,2)と点B(1,0,1)を結ぶ線分ABをz軸の周りに\\
1回転させて得られる局面をSとする。S上の点Pとxy平面上の点QがPQ=2を\\
満たしながら動くとき、線分PQの中点Mが通過しうる範囲をKとする。\\
Kの体積を求めよ。
\end{eqnarray}
投稿日:2022.03.04

<関連動画>

福田の数学〜早稲田大学2022年理工学部第4問〜正八面体の内部に配置した6個の球の和集合の体積と共通部分の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ 一辺の長さが\sqrt3+1である正八面体の頂点を右図(※動画参照)\\
のようにP_1,P_2,P_3,P_4,P_5,P_6とする。i=1,2,\ldots,6に対して\\
P_i以外の5点を頂点とする四角錐のすべての面に\\
内接する球(内部含む)をB_iとする。B_1の体積をXとし、B_1と\\
B_2の共通部分の体積をYとし、B_1,B_2,B_3の共通部分の体積をZ\\
とする。さらにB_1,B_2,\ldots,B_nを合わせて得られる立体の体積を\\
V_n\ \ (n=2,3,\ldots,6)とする。以下の問いに答えよ。\\
(1)V_n=aX+bY+cZとなる整数a,b,cをn=2,3,6の場合\\
について求めよ。\\
(2)Xの値を求めよ。\\
(3)V_2の値を求めよ。\\
\end{eqnarray}
この動画を見る 

高校数学:数学検定準1級1次:問題5 :部分積分

アイキャッチ画像
単元: #積分とその応用#不定積分#定積分#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^2 (\frac{x^2}{2}+3x)e^{\frac{x}{2}} dx$

不定積分、定積分を求めよ
この動画を見る 

【高校数学】毎日積分24日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^πx^2cos^2xdx$
この動画を見る 

【高校数学】名古屋大学2024年の手強い積分の問題をその場で解説しながら解いてみた!毎日積分82日目~47都道府県制覇への道~【㉕愛知】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【名古屋大学 2024】
袋の中にいくつかの赤玉と白玉が入っている。すべての玉に対する赤玉の割合を$p(0≦p≦1)$とする。袋から無作為に玉を一つ取り出して袋に戻す試行を行う。試行を$n$回行うとき、赤玉を$k$回以上取り出す確率を$f(k)$をおく。
(1) $n≧2$に対して、$f(1), f(2)$を求めよ。
(2) $k=1,2, ・・・・・・,n$に対して、等式
$\displaystyle f(k)=\frac{n!}{(k-1)!(n-k)!}\int_0^px^{k-1}(1-x)^{n-k}dx$
を示せ。
(3) 自然数$k$に対して、定積分
$\displaystyle I=\int_0^{\frac{1}{2}}x^k(1-x)^k dx$
を求めよ。
この動画を見る 

【数Ⅲ】積分法の応用:体積

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線C:y=ax² と直線 ℓ:y=bxとで囲まれた図形をDとする。(a,bを正の定数とする)
Dを ℓのまわりに1回転してできる立体の体積Vを求めよ。
この動画を見る 
PAGE TOP