福田の数学〜慶應義塾大学2024年医学部第3問〜四面体の切断面の面積と極限 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2024年医学部第3問〜四面体の切断面の面積と極限

問題文全文(内容文):
$\Large\boxed{3}$ -1,0,1以外のすべての実数$x$に対して定義された関数
$f(x)$=$\displaystyle\frac{1}{3x(x^2-1)}$
を考える。
(1)$f(x)$は$x$=$\boxed{\ \ (あ)\ \ }$において極小値$\boxed{\ \ (い)\ \ }$をとり、$x$=$\boxed{\ \ (う)\ \ }$において極大値$\boxed{\ \ (え)\ \ }$をとる。
(2)曲線$y$=$f(x)$の概形を描きなさい。
(3)直線$y$=$mx$が曲線$y$=$f(x)$とちょうど4点で交わるとき、定数$m$の値の範囲は$\boxed{\ \ (お)\ \ }$である。
(4)$a$=$\boxed{\ \ (か)\ \ }$, $b$=$\boxed{\ \ (き)\ \ }$, $c$=$\boxed{\ \ (く)\ \ }$とすると、つぎの恒等式が成り立つ。
$f(x)$=$\displaystyle\frac{a}{x-1}$+$\displaystyle\frac{b}{x}$+$\displaystyle\frac{c}{x+1}$
(5)直線$y$=$mx$ (ただし$m$>0)が曲線$y$=$f(x)$と第1象限において交わる点Pの$x$座標を$x(m)$とし、
$A(m)$=$\displaystyle\lim_{T \to \infty}\int_{x(m)}^Tf(x)dx$
とおいて、$A(m)$を$m$の式で表すと、$A(m)$=$\boxed{\ \ (け)\ \ }$となる。また、原点をO、$\left(x(m),0\right)$を座標とする点をQとし、三角形OPQの面積を$B(m)$とおくと$\displaystyle\lim_{m \to +0}\frac{A(m)}{B(m)}$=$\boxed{\ \ (こ)\ \ }$ となる。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ -1,0,1以外のすべての実数$x$に対して定義された関数
$f(x)$=$\displaystyle\frac{1}{3x(x^2-1)}$
を考える。
(1)$f(x)$は$x$=$\boxed{\ \ (あ)\ \ }$において極小値$\boxed{\ \ (い)\ \ }$をとり、$x$=$\boxed{\ \ (う)\ \ }$において極大値$\boxed{\ \ (え)\ \ }$をとる。
(2)曲線$y$=$f(x)$の概形を描きなさい。
(3)直線$y$=$mx$が曲線$y$=$f(x)$とちょうど4点で交わるとき、定数$m$の値の範囲は$\boxed{\ \ (お)\ \ }$である。
(4)$a$=$\boxed{\ \ (か)\ \ }$, $b$=$\boxed{\ \ (き)\ \ }$, $c$=$\boxed{\ \ (く)\ \ }$とすると、つぎの恒等式が成り立つ。
$f(x)$=$\displaystyle\frac{a}{x-1}$+$\displaystyle\frac{b}{x}$+$\displaystyle\frac{c}{x+1}$
(5)直線$y$=$mx$ (ただし$m$>0)が曲線$y$=$f(x)$と第1象限において交わる点Pの$x$座標を$x(m)$とし、
$A(m)$=$\displaystyle\lim_{T \to \infty}\int_{x(m)}^Tf(x)dx$
とおいて、$A(m)$を$m$の式で表すと、$A(m)$=$\boxed{\ \ (け)\ \ }$となる。また、原点をO、$\left(x(m),0\right)$を座標とする点をQとし、三角形OPQの面積を$B(m)$とおくと$\displaystyle\lim_{m \to +0}\frac{A(m)}{B(m)}$=$\boxed{\ \ (こ)\ \ }$ となる。
投稿日:2024.06.25

<関連動画>

対称式の良問【2008年早稲田大学】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
実数$x$が$x^3+\dfrac{1}{x^3}=52$を満たすとき、$x^4+\dfrac{1}{x^4}$の値を求めよ。

2008早稲田大過去問
この動画を見る 

大学入試問題#906「色んな要素がモリモリ問題」昭和大学医学部(2012)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#昭和大学
指導講師: ますただ
問題文全文(内容文):
正の数$a,b$が$a^3+b^3=5$を満たすとき、$a+b$のとりうる値の範囲を求めよ。

出典:2012年昭和大学医学部
この動画を見る 

上智/京大 3次方程式/整式の除法 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#京都大学#上智大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
上智大学過去問題
$α = \{ (\frac{413}{8})^{\frac{1}{2}} +6 \} ^{\frac{1}{3}} - $ $ \{ (\frac{413}{8})^{\frac{1}{2}} -6 \} ^{\frac{1}{3}} $
αを解とする整数係数の3次方程式を求めよ。

京都大学過去問題
$(x^{100}+1)^{100}+(x^2+1)^{100}+1$は$x^2+x+1$で割り切れるか。
この動画を見る 

福田の数学〜対称性を意識しよう〜慶應義塾大学2023年環境情報学部第5問〜球が立方体の辺と接する条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
xy空間において、O(0,0,0),A(1,0,0),B(1,1,0),C(0,1,0),D(0,0,1),E(1,0,1),F(1,1,1),G(0,1,1)を頂点とする立方体 OABC-DEFG が存在する。いま、原点を通る球 S が、立方体 OABC-DEFG のいくつかの辺と接している。以下のそれぞれの場合について、球 S の半径と中心の座標を求めなさい。
※図は動画内
(1)3 つの辺 BF,EF,FG と接する場合
( 2 ) 6 つの辺 AB , AE, BC, CG, DE, DG と接する場合
( 3 ) 4 つの辺 AB, BC, EF, FG と接する場合
(4)4 つの辺 DE, EF, FG, DG と接する場合

慶應義塾大学環境情報学部過去問
この動画を見る 

福田の数学〜早稲田大学2023年教育学部第3問〜関数の増減と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#立体図形#体積・表面積・回転体・水量・変化のグラフ#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 実数$a$,$b$>0に対し、$a$≦$b$の場合は$a$≦$x$≦$b$の範囲、$a$>$b$の場合は$b$≦$x$≦$a$の範囲における$y$=$\log x$のグラフを$C_{a,b}$とする。このとき、次の問いに答えよ。
(1)点(2,-1)と$C_{2,b}$上の点との距離の最小値を$b$を用いて表せ。
(2)直線$x$=$a$と直線$x$=$b$の間で、$C_{a,b}$と$x$軸によって囲まれる部分を$x$軸の周りに1回転して得られる立体の体積を$S_{a,b}$とする。$S_{1,b}$を$b$を用いて表せ。
(3)$S_{a,b}$を(2)で定義したものとする。$S_{a,a+1}$が最小値をとる$a$の値を求めよ。
この動画を見る 
PAGE TOP