大学入試問題#716「文系にはきつくね?」 早稲田商学部(2015) 数列 - 質問解決D.B.(データベース)

大学入試問題#716「文系にはきつくね?」 早稲田商学部(2015) 数列

問題文全文(内容文):
数列$\{a_n\}$は次の条件$(i),(ii)$を満たす
($i$)$a_1=0,\ a_n \leq 0(n=2,3,4・・・)$
($ii$)$n=\displaystyle \int_{a_n}^{a_{n+1}} (x+\displaystyle \frac{1}{2})dx(n=1,2,3,・・・)$
   $n=2,3,4,・・・$のとき、$a_n$を求めよ

出典:2015年早稲田大学商学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
数列$\{a_n\}$は次の条件$(i),(ii)$を満たす
($i$)$a_1=0,\ a_n \leq 0(n=2,3,4・・・)$
($ii$)$n=\displaystyle \int_{a_n}^{a_{n+1}} (x+\displaystyle \frac{1}{2})dx(n=1,2,3,・・・)$
   $n=2,3,4,・・・$のとき、$a_n$を求めよ

出典:2015年早稲田大学商学部 入試問題
投稿日:2024.01.26

<関連動画>

【英語】【10秒で解けるかな?】2015年度北海道大学大問2(1)#shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2015年度北海道大学
大問2(1)
下線部(1)で、空欄( a )と( b )に入る適切な英語をそれぞれ1語記入しなさい。

下線部1
The introduction of commercial space flight will shift the focus ( a ) abstract claims of advancing humanity ( b ) the more concrete demands of customer satisfaction.
この動画を見る 

#宮崎大学 2023年 #定積分 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-2}^{0} log(x+3) dx$

出典:2023年宮崎大学
この動画を見る 

徳島大(医)放物線の法線

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#徳島大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$C:y=x^2$上の$P(t,t^2)(t\gt 0)$における法線と$C$との交点を$Q(\neq P)$とする.
$PQ$の最小値を求めよ.

2020徳島大(医)過去問
この動画を見る 

【高校数学】毎日積分73日目~47都道府県制覇への道~【⑰岡山】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#岡山大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【岡山大学 2023】
$a<0,b>0$とする。2つの曲線$\displaystyle C:y=\frac{1}{x^2+1}$と$D:y=ax^2+b$がある。いま、$x>0$で$C$と$D$が共有点をもち、その点における2つの曲線の接線が一致しているとする。その共有点の$x$座標を$t$とし、$D$と$x$軸で囲まれた部分の面積を$S$とする。以下の問いに答えよ。
(1) $D$と$x$軸の交点の$x$座標を$±p$とし、$p>0$とする。$S$を$a$と$p$を用いて表せ。
(2) $a,b$を$t$を用いて表せ。
(3) $S$を$t$を用いて表せ。
(4) $t>0$の範囲で$S$が最大となるような$D$の方程式を求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題039〜早稲田大学2019年度理工学部第2問〜正n角形の周の長さと極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
nは3以上の自然数とする。面積1の正n角形$P_n$を考え、その周の
長さを$L_n$とする。次の問いに答えよ。
(1)$(L_n)^2$を求めよ。
(2)$\lim_{n \to \infty}L_n$を求めよ。
(3)$n \lt k$ならば$(L_n)^2 \gt (L_k)^2$となることを示せ。

2019早稲田大学理工学部過去問
この動画を見る 
PAGE TOP