大学入試問題#716「文系にはきつくね?」 早稲田商学部(2015) 数列 - 質問解決D.B.(データベース)

大学入試問題#716「文系にはきつくね?」 早稲田商学部(2015) 数列

問題文全文(内容文):
数列$\{a_n\}$は次の条件$(i),(ii)$を満たす
($i$)$a_1=0,\ a_n \leq 0(n=2,3,4・・・)$
($ii$)$n=\displaystyle \int_{a_n}^{a_{n+1}} (x+\displaystyle \frac{1}{2})dx(n=1,2,3,・・・)$
   $n=2,3,4,・・・$のとき、$a_n$を求めよ

出典:2015年早稲田大学商学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
数列$\{a_n\}$は次の条件$(i),(ii)$を満たす
($i$)$a_1=0,\ a_n \leq 0(n=2,3,4・・・)$
($ii$)$n=\displaystyle \int_{a_n}^{a_{n+1}} (x+\displaystyle \frac{1}{2})dx(n=1,2,3,・・・)$
   $n=2,3,4,・・・$のとき、$a_n$を求めよ

出典:2015年早稲田大学商学部 入試問題
投稿日:2024.01.26

<関連動画>

大学入試問題#648「あえてのこう」 静岡大学(2018) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#静岡大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(x)=\displaystyle \frac{1}{e^x+e^{-x}}$
$x=log(\tan\theta)$とおいて
$\displaystyle \int_{0}^{\frac{1}{2}log3} f(x) dx$を求めよ

出典:2018年静岡大学 入試問題
この動画を見る 

信州大 連立漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x_1=1,y_1=0$

$x_{n+1}=x_n+2y_n$
$y_{n+1}=x_n+y_n$

このとき、${x_n}^2-2{y_n}^2$を求めよ.

信州大過去問
この動画を見る 

学習院大 整数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#学習院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3n+4=(m-1)(n-m)$
$m,n$自然数すべて求めよ

出典:2011年学習院大学 過去問
この動画を見る 

福田の数学〜東京医科歯科大学2024医学部第1問〜n変数の不定方程式の解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$n$を$2$以上の自然数とする。自然数の組$(a_1,a_2,\cdots,a_n)$を解とする方程式
$(*)~a_1+a_2+\cdots+a_n=a_1 \times a_2 \times \cdots \times a_n$を考える。
(1) $n=3$のとき、$(*)$の解$(a_1,a_2,a_3)$のうち、$a_1\leqq a_2 \leqq a_3$を満たすものをすべて求めよ。
(2) $n\geqq 3$のとき、$(*)$の任意の解$(a_1,a_2,\cdots,a_n)$において、$a_i=1$となる$i$が少なくとも1つ存在することを示せ。
(3) $(*)$のある解$(a_1,a_2,\cdots,a_n)$において、$a_i=1$となる$i$がちょうど2個存在しているとする。このとき、$n$のとりうる値を全て求めよ。
この動画を見る 

京都大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1~5$の数を等確率で入れて$n$桁の整数を作る
$X$が3で割り切れる確率を求めよ

出典:2017年京都大学 過去問
この動画を見る 
PAGE TOP