大学入試問題#704 東京理科大学(2013) #定積分 #Shorts - 質問解決D.B.(データベース)

大学入試問題#704 東京理科大学(2013) #定積分 #Shorts

問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} x\ \sin\displaystyle \frac{x}{3} dx$

出典:2013年東京理科大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} x\ \sin\displaystyle \frac{x}{3} dx$

出典:2013年東京理科大学
投稿日:2024.01.14

<関連動画>

見ただけで何でくくれるかは、わかる。 大学入試の因数分解 秋田大

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$x(x+1)(x+2)-y(y+1)(y+2)+xy(x-y)$

秋田大学
この動画を見る 

福田の数学〜東北大学2023年理系第6問〜線分の通過範囲の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#接線と法線・平均値の定理#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ 関数$f(x)$=$-\frac{1}{2}x$$-\frac{4}{6x+1}$について、以下の問いに答えよ。
(1)曲線y=f(x)の接線で、傾きが1であり、かつ接点のx座標が正であるものの方程式を求めよ。
(2)座標平面上の2点P(x, f(x)), Q(x+1, f(x)+1)を考える。xが0≦x≦2の範囲を動くとき、線分PQが通過してできる図形Sの概形を描け。またSの面積を求めよ。

2023東北大学理系過去問
この動画を見る 

福田の数学〜名古屋大学2022年理系第3問〜複素数平面上の正六角形の頂点の位置

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数平面上に、原点Oを頂点の1つとする正六角形OABCDEが与えられている。
ただしその頂点は時計の針の進む方向と逆向きにO,A,B,C,D,Eとする。
互いに異なる0でない複素数$\alpha,\beta,\gamma$が、
$0 \leqq \arg(\frac{\beta}{\alpha}) \leqq \pi, 4\alpha^2-2\alpha\beta+\beta^2=0$, 
$2\gamma^2-(3\alpha+\beta+2)\gamma+(\alpha+1)(\alpha+\beta)=0$
を満たし、$\alpha,\beta,\gamma$のそれぞれが正六角形OABCDEの頂点のいずれかであるとする。
(1)$\frac{\beta}{\alpha}$を求め、$\alpha,\beta$がそれぞれどの頂点か答えよ。
(2)組$(\alpha,\beta,\gamma)$を全て求め、それぞれの組について正六角形OABCDEを
複素数平面上に図示せよ。

2022名古屋大学理系過去問
この動画を見る 

福田の数学〜青山学院大学2025理工学部第2問〜虚数係数の2次方程式の解と正方形の頂点

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

$i$を虚数単位とする。

複素数$z$についての方程式

$z^2-4iz=4\sqrt3 i \ \cdots (*)$

の$2$つの解を$\alpha,\beta(\vert \alpha \vert \lt \vert \beta \vert )$とし、

$\alpha,\beta$が表す複素数平面上の点を

それぞれ$A,B$とする。

(1)方程式$(*)$は

$(z-\boxed{ア}i)^2=\boxed{イ} \left(\cos \dfrac{\boxed{ウ}}{\boxed{エ}}\pi+i\sin\dfrac{\boxed{ウ}}{\boxed{エ}}\pi\right) \qquad \left(0\leqq \dfrac{\boxed{ウ}}{\boxed{エ}}\pi \lt 2\pi \right)$

と表せるので

$\alpha=-\sqrt{\boxed{オ}}+\left(\boxed{カ}-\sqrt{\boxed{キ}}\right)i$である。

(2)線分$AB$の長さは$\boxed{ク}\sqrt{\boxed{ケ}}$である。

また、線分$AB$を対角線とする正方形の

残りの$2$頂点を表す複素数は

$-\sqrt{\boxed{コ}}+\left(\boxed{サ}+\sqrt{\boxed{シ}}\right)i$と

$\sqrt{\boxed{コ}}-\left(\boxed{サ}+\sqrt{\boxed{シ}}\right)i$である。

$2025$年青山学院大学理工学部過去問題
この動画を見る 

大学入試問題#16 埼玉大学(2020) 式変形

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学
指導講師: ますただ
問題文全文(内容文):
実数$x,y$が$(x-3)^2+(y-3)^2=8$を満たすとき
$x+y,\ xy$のとりうる値の範囲を求めよ。

出典:2020年埼玉大学 入試問題
この動画を見る 
PAGE TOP