大学入試問題#699「まあまあ基本」 早稲田大学社会学部(2023) 整数問題 - 質問解決D.B.(データベース)

大学入試問題#699「まあまあ基本」  早稲田大学社会学部(2023) 整数問題

問題文全文(内容文):
$xyz=x+y+z$を満たす整数$x,y,z$の組をすべて求めよ。
$(0 \lt x \leq y \leq z)$

出典:2023年早稲田大学社会学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$xyz=x+y+z$を満たす整数$x,y,z$の組をすべて求めよ。
$(0 \lt x \leq y \leq z)$

出典:2023年早稲田大学社会学部 入試問題
投稿日:2024.01.09

<関連動画>

福田の数学〜青山学院大学2022年理工学部第1問〜サイコロの目の約数倍数の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
1個のさいころを3回投げるとき、出た目を順にX_1,X_2,X_3とする。
また、$Y=\frac{X_2X_3}{X_1}$とする。
(1)$X_1=2$のとき、Yが整数となる確率は$\frac{\boxed{ア}}{\boxed{イ}}$である。

(2)$X_1=3$のとき、Yが整数となる確率は$\frac{\boxed{ウ}}{\boxed{エ}}\ である。

(3)$X_1=4$のとき、Yが整数となる確率は$\frac{\boxed{オ}}{\boxed{カキ}}$である。

(4)Yが整数となる確率は$\frac{\boxed{クケ}}{\boxed{コサ}}$である。

2022青山学院大学理工学部過去問
この動画を見る 

数学「大学入試良問集」【6−4 メネラウス、方べきの定理】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#方べきの定理と2つの円の関係#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\triangle ABC$に対し、点$P$辺$AB$の中点、点$Q$は辺$BC$上の$B,C$と異なる点、点$R$は直線$AQ$と直線$CP$との交点とする。
このとき、各問いに答えよ。
(1)
$a=\displaystyle \frac{CR}{RP},b=\displaystyle \frac{CQ}{QB}$とおくとき、$a$と$b$の関係式を求めよ。

(2)
$\triangle ABC$の外接円$O$と直線$CP$との点$C$以外の交点を$X$とする。
$AP=CR,CQ=QB$であるとき、$CR:RP:PX$を求めよ。
この動画を見る 

大学入試問題#494「基本問題」 信州大学後期(2011) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \sin^4x\ dx$

出典:2011年信州大学後期 入試問題
この動画を見る 

福田の1.5倍速演習〜合格する重要問題060〜早稲田大学2019年度教育学部第3問〜区分求積と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ (1)m,nを自然数とし、$n \geqq 2$とする。このとき、
$\log\left(1+\displaystyle\frac{n}{m}\right) \lt \displaystyle\sum_{k=m}^{m+n-1}\displaystyle\frac{1}{k} \lt \log\left(1+\displaystyle\frac{n}{m}\right)+\displaystyle\frac{n}{m(m+n)}$
を証明せよ。ただし、$\displaystyle\sum_{k=m}^{m+n-1}\displaystyle\frac{1}{k}=\displaystyle\frac{1}{m}+\displaystyle\frac{1}{m+1}+\cdots+\displaystyle\frac{1}{m+n-1}$とする。
(2)2以上の自然数$n$に対して
$a_n=\displaystyle\sum_{k=1}^n\frac{1}{(2n+k)(n+1-k)}$
$b_n=\displaystyle\frac{\log n}{n}$
とおく。$\displaystyle\lim_{n \to \infty}\frac{a_n}{b_n}$を求めよ。

2019早稲田大学教育学部過去問
この動画を見る 

数学「大学入試良問集」【13−1 Snとanの取り扱い】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#明星大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とする。
$S_n=-2a_n+3n$が成り立つとき、次の問いに答えよ。
(1)$a_1$と$a_2$を求めよ。
(2)$a_{n+1}$を$a_n$を用いて表せ。
(3)$a_n$を$n$を用いて表せ。
この動画を見る 
PAGE TOP