大学入試問題#687「なんか見える」 東海大学医学部(2014) - 質問解決D.B.(データベース)

大学入試問題#687「なんか見える」 東海大学医学部(2014)

問題文全文(内容文):
$a \gt 0$のとき、
$a+\displaystyle \frac{17}{a+4}$の最小値を求めよ

出典:2014年東海大学医学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: ますただ
問題文全文(内容文):
$a \gt 0$のとき、
$a+\displaystyle \frac{17}{a+4}$の最小値を求めよ

出典:2014年東海大学医学部 入試問題
投稿日:2023.12.28

<関連動画>

香川大 整数問題 合同式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#香川大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$6n^5-15n^4+10n^3-n$
$30$の倍数であることを示せ

出典:香川大学 過去問
この動画を見る 

福田の数学〜立教大学2023年理学部第1問(1)〜指数方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)方程式$2^{x+2}$-$2^{2x+1}$+16=0 を解くと$x$=$\boxed{\ \ ア\ \ }$である。

2023立教大学理学部過去問
この動画を見る 

秋田大(医)数列の和 Σ 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#秋田大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
秋田大学過去問題
$\displaystyle\sum_{k=1}^n \frac{1}{k}(a_k+\frac{1}{k+1})=2^n+1-\frac{1}{n+1}$
(1)数列{$a_n$}の一般項をnを用いて表せ。
(2)$\displaystyle\sum_{k=1}^na_k$を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2023年理工学部第5問(2)〜不定方程式の整数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ (2)$f(x)$=$x-$$\displaystyle\frac{1}{x}$とする。自然数$a$,$b$,$c$の組で$a$≦$b$≦$c$かつ$f(a)$+$f(b)$+$f(c)$が自然数であるものの総数は$\boxed{\ \ ト\ \ }$個である。その中で$f(a)$+$f(b)$+$f(c)$の値が最大になるのは($a$,$b$,$c$)=$\boxed{\ \ ナ\ \ }$のときである。
この動画を見る 

福田の数学〜東北大学2025理系第4問〜2曲線の相接と面積の極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

$n$を正の整数、$a$を正の実数とし、

関数$f(x)$と$g(x)$を次のように定める。

$f(x)=n\log x,\quad g(x)=ax^n$

また、曲線$y=f(x)$と曲線$y=g(x)$が共有点をもち、

その共有点における

$2$つの曲線の接線が一致しているとする。

このとき、以下の問いに答えよ。

(1)$a$の値を求めよ。

(2)この$2$つの曲線と$x$軸で囲まれた部分の面積

$S_n$を求めよ。

(3)$\quad $(2)で求めた$S_n$に対し、極限$\displaystyle \lim_{n\to\infty}S_n$を求めよ。

$2025$年東北大学理系過去問題
この動画を見る 
PAGE TOP