大学入試問題#687「なんか見える」 東海大学医学部(2014) - 質問解決D.B.(データベース)

大学入試問題#687「なんか見える」 東海大学医学部(2014)

問題文全文(内容文):
$a \gt 0$のとき、
$a+\displaystyle \frac{17}{a+4}$の最小値を求めよ

出典:2014年東海大学医学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: ますただ
問題文全文(内容文):
$a \gt 0$のとき、
$a+\displaystyle \frac{17}{a+4}$の最小値を求めよ

出典:2014年東海大学医学部 入試問題
投稿日:2023.12.28

<関連動画>

大学入試問題#872「受験生は一度は解くべき」 #東北大学医学部AO(2019) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$a$を実数とする。
次の極限を求めよ。
$\displaystyle \lim_{ n \to \infty } (1+a^{2n})^{\frac{1}{n}}$

出典:2019年東北大学医学部AO
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第1問(4)〜球面上の3点が作る三角形

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#円と方程式#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (4)座標空間に球面S:$(x-3)^2$+$(y+2)^2$+$(z-1)^2$=36 がある。球面Sが平面y=2 と交わってできる円をCとおく。
(i)円Cの中心の座標は$\boxed{\ \ ク\ \ }$であり、半径は$\boxed{\ \ ケ\ \ }$である。
(ii)円Cと平面x=3の交点をA,Bとし、AとB以外の球面S上の任意の点をPとする。三角形PABにおいて、辺PBを4:3に内分する点をD、線分ADを5:3に内分する点をMとし、直線PMと辺ABとの交点をEとする。このとき、AEの長さは$\boxed{\ \ コ\ \ }$である。ただし、Bのz座標はAのz座標よりも大きいとする。

2023慶應義塾大学薬学部過去問
この動画を見る 

大学入試問題#412「よくみる積分!?」 自治医科大学2022 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#自治医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e^3} x^2(log\ x)^2\ dx$

出典:2022年自治医科大学 入試問題
この動画を見る 

大学入試問題#593「カップラーメン食べながらでも解いて」 関西大学(2011) #三角関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#関西大学
指導講師: ますただ
問題文全文(内容文):
$x-y=\displaystyle \frac{\pi}{3}$のとき
$\displaystyle \frac{\sin\ x-\sin\ y}{\cos\ x+\cos\ y}$の値を求めよ

出典:2011年関西大学 入試問題
この動画を見る 

早稲田大(政)漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$S_n=2a_n^2+\displaystyle \frac{1}{2}a_n-\displaystyle \frac{3}{2}$

すべての項は同符号
一般項を求めよ

出典:2001年早稲田大学 政治経済学部 過去問
この動画を見る 
PAGE TOP