大学入試問題#696「基本問題だけど、良問」 久留米大学医学部(2014)定積分 - 質問解決D.B.(データベース)

大学入試問題#696「基本問題だけど、良問」 久留米大学医学部(2014)定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{1} log(\sqrt{ x }+1) dx$

出典:2014年久留米大学医学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#久留米大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} log(\sqrt{ x }+1) dx$

出典:2014年久留米大学医学部 入試問題
投稿日:2024.01.06

<関連動画>

#筑波大学(2019) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} xe^{2x} dx$

出典:2019年筑波大学
この動画を見る 

東北大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3^a-2^n=1$ $a,b \varepsilon Z$

(1)
$a,b$はともに正、示せ

(2)
$b \gt 1$のとき、$a$偶数

(3)
$(a,b)$すべて求めよ

出典:2018年東北大学 過去問
この動画を見る 

2次方程式 3通りで解説!! 2024日比谷高校

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
方程式を解け
$(x-1)^2-4(x-2)^2=0$

2024日比谷高等学校
この動画を見る 

福田の数学〜東京理科大学2022年理工学部第3問〜接線と法線と囲まれる面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
関数f(x)を次で定める。
$f(x)=\frac{1}{x}\ \ (x \gt 0)$
座標平面上の曲線y=f(x)をCとする。C上の点$P(2,\ \frac{1}{2})$と、正の定数tに対して
y軸上の点$A(0,\ -t)$をとる。点Aと点Pを通る直線を$l_1$とする。
(1)直線$l_1$を表す方程式を、tを用いて表せ。
(2)C上の点PにおけるCの法線とy軸の交点を$(0,\ -t_0)$とおく。$t_o$を求めよ。
上の(2)で求めたt_0に対してt \lt t_0とする。点Pを通り、直線$l_1$に垂直な直線を
$l_2$とする。$l_2$とCの交点のうち、点Pと異なる点をQとおく。
(3)点Qの座標を、tを用いて表せ。
最後に$t=\frac{3}{2}$の時を考える。
(4)点Qを通るCの接線を$l_3$とする。このとき、2つの直線$l_1,l_3$および曲線Cで
囲まれた部分の面積を求めよ。

2022東京理科大学理工学部過去問
この動画を見る 

大学入試問題#363「置換からの部分積分?」 横浜国立大学(2014) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\sqrt{ \frac{\pi}{2} }}x^3\cos(x^2)dx$

出典:2014年横浜国立大学 入試問題
この動画を見る 
PAGE TOP