大学入試問題#641「基本問題」 埼玉大学(2007) #不定積分 - 質問解決D.B.(データベース)

大学入試問題#641「基本問題」 埼玉大学(2007) #不定積分

問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x^3-4x^2-x^2}{x^2-5x+4} dx$

出典:2007年埼玉大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x^3-4x^2-x^2}{x^2-5x+4} dx$

出典:2007年埼玉大学 入試問題
投稿日:2023.11.07

<関連動画>

大学入試問題#312 明治大学2021 #定積分 #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ k \to \infty }\displaystyle \int_{0}^{1}\displaystyle \frac{e^{kx}-1}{e^{kx}+1}$

出典:2021年明治大学 入試問題
この動画を見る 

福岡大(医)連立指数方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#福岡大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y$は1でない正の実数であるとする.これを解け.

$\begin{eqnarray}
\left\{
\begin{array}{l}
x^{x+y}=y^{10} \\
y^{x+y}=x^{90}
\end{array}
\right.
\end{eqnarray}$

福岡大(医)過去問
この動画を見る 

福田の数学〜明治大学2024全学部統一IⅡAB第3問〜変わった規則の数列と点列と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#数列#平面上のベクトルと内積#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
整数からなる数列$\{a_n\}~(n=1,2,3,\cdots)$を次の規則1、規則2により定める。
(規則1)$a_1=0,a_2=1$である。
(規則2)$k=1,2,3,\cdots$について、初項から第$2^k$項までの値のそれぞれに$1$を加え、それらすべてを逆の順序にしたものが第$(2^k+1)$項から第$2^{k+1}$項までの値と定める。
例えば、初項と第2項までのそれぞれに$1$を加えて順序を逆にすると$2,1$を得る。これより、初項から第4項までは$0,1,2,1$となる。同様に、これらのそれぞれに$1$を加えて順序を逆にすると$2,3,2,1$となる。これより、初項から第8項までは$0,1,2,1,2,3,2,1$となる。
(1) 以上の規則により得られる数列$\{a_n\}$において、$a_{10}=\boxed{ア}$であり、$a_{16}=\boxed{イ}$である。また第$2^k$項$(k=5,6,7,\cdots)$の値は$\boxed{ウ}$である。

(2) $a_{518}$を求めたい。上記の規則2によれば、$1 \leqq i \leqq 2^k$を満たす$i$に対して$a_1$に$1$を加えた数と第$\boxed{エ}$項が等しいと定めている。実際に、$2^b < 518 < 2^{b+1}$を満たすような整数$b$は$\boxed{オ}$であることに注意すれば、$a_{518}=\boxed{カ}$である。
エの解答群
⓪ $2^k+i-1$ ① $2^k+i$ ② $2^k+i+1$ ③$2^k+2i$ ④ $2^k+2i+1$
⑤ $2^k-i-1$ ⑥ $2^{k+1}-i$ ⑦ $2^{k+1}-i+1$ ⑧ $2^{k+1}-2i-1$ ⑨ $2^{k+1}-2i$

(3) 点$\textrm{P}_k (k=1,2,3,\cdots)$を次のように定める。
数列$\{a_n\}$の初項から第$2^k$項に着目し、$a_n$を4で割った余りにしたがって、ベクトル$\vec{e_n}$を
\begin{eqnarray}
\vec{e_n}
=
\begin{cases}
(1,0) & a_nが4の倍数のとき \\
(0,1) & a_nを4で割った余りが1のとき\\
(-1,0) & a_nを4で割った余りが2のとき\\
(0,-1) & a_nを4で割った余りが3のとき
\end{cases}
\end{eqnarray}
によって定め、点$\textrm{P}_1$の位置ベクトルを$\overrightarrow{\textrm{OP}_1}=\vec{e_1}+\vec{e_2}$とし、点$\textrm{P}_k (k=2,3,4,\cdots)$の位置ベクトルを$\overrightarrow{\textrm{OP}_k}=\vec{e_1}+\vec{e_2}+\vec{e_3}+\cdots+\vec{e_{2^k}}$とする。たとえば、$\overrightarrow{\textrm{OP}_1}=(1,0)+(0,1)+(-1,0)+(0,1)=(0,2)$である。$\{a_n\}$を定める規則に注目すると、$|\overrightarrow{\textrm{OP}_{k+1}}|$は$|\overrightarrow{\textrm{OP}_{k}}|$の$\boxed{キ}$倍であり、$\angle{\textrm{P}_k\textrm{OP}_{k+1}}=\boxed{ク}$である。このことから$\overrightarrow{\textrm{OP}_{99}}$は$(\boxed{ケ},\boxed{コ})$である。
キの解答群
⓪ $\dfrac18$ ① $\dfrac14$ ② $\dfrac12$ ③ $\dfrac{\sqrt{2}}2$ ④ $1$
⑤ $\sqrt2$ ⑥ $2$ ⑦ $2\sqrt2$ ⑧ $4$ ⑨ $8$
クの解答群
⓪ $15^{\circ}$ ① $30^{\circ}$ ② $45^{\circ}$ ③ $60^{\circ}$ ④ $75^{\circ}$
⑤ $90^{\circ}$ ⑥ $105^{\circ}$ ⑦ $120^{\circ}$ ⑧ $135^{\circ}$ ⑨ $150^{\circ}$
ケ、コの解答群
⓪ $-2^{99}$ ① $-2^{98}$ ② $-2^{49}$ ③ $-2^{48}$ ④ $0$
⑤ $1$ ⑥ $2^{48}$ ⑦ $2^{49}$ ⑧ $2^{98}$ ⑨ $2^{99}$
この動画を見る 

6乗−6乗 因数分解 京都産業大学

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$x^6-y^6$

京都産業大学
この動画を見る 

福田の数学〜東京工業大学2024年理系第4問〜表の出る確率が異なるコインを投げたときの表が奇数枚出る確率と極限

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $n$を正の整数とし、$C_1$,...,$C_n$を$n$枚の硬貨とする。各$k$=1,...,$n$に対し、硬貨$C_k$を投げて表が出る確率を$p_k$、裏が出る確率を1-$p_k$とする。この$n$枚の硬貨を同時に投げ、表が出た硬貨の枚数が奇数であれば成功、というゲームを考える。
(1)$p_k$=$\frac{1}{3}$ ($k$=1,...,$n$)のとき、このゲームで成功する確率$X_n$を求めよ。
(2)$p_k$=$\frac{1}{2(k+1)}$ ($k$=1,...,$n$)のとき、このゲームで成功する確率$Y_n$を求めよ。
(3)$n$=$3m$($m$は正の定数)で$k$=1,...,$3m$に対して
$p_k$=$\left\{\begin{array}{1}
\frac{1}{3m} (k=1,...,m)   \\
\frac{2}{3m} (k=m+1,...,2m)\\
\frac{1}{m} (k=2m+1,...,3m)\\
\end{array}\right.$
とする。このゲームで成功する確率を$Z_{3m}$とするとき、$\displaystyle\lim_{m \to \infty}Z_{3m}$ を求めよ。
この動画を見る 
PAGE TOP