大学入試問題#641「基本問題」 埼玉大学(2007) #不定積分 - 質問解決D.B.(データベース)

大学入試問題#641「基本問題」 埼玉大学(2007) #不定積分

問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x^3-4x^2-x^2}{x^2-5x+4} dx$

出典:2007年埼玉大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x^3-4x^2-x^2}{x^2-5x+4} dx$

出典:2007年埼玉大学 入試問題
投稿日:2023.11.07

<関連動画>

福田の数学〜九州大学2022年理系第3問〜約数と倍数と不定方程式の自然数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
自然数m,nが
$n^4=1+210m^2  \ldots①$
を満たすとき、以下の問いに答えよ。
(1)$\frac{n^2+1}{2},\ \frac{n^2-1}{2}$は互いに素な整数であることを示せ。
(2)$n^2-1$は168の倍数であることを示せ。
(3)①を満たす自然数の組(m,n)を1つ求めよ。

2022九州大学理系過去問
この動画を見る 

福田の数学〜立教大学2022年経済学部第1問(3)〜整式の割り算と余り

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
aを定数とする。
3次式 $F(x)=x^3-6x+a$を2次式$G(x)=x^2 -3x+2$で割った余りを$R(x)$ とする。
G(x)がR(x)で割り切れるようなaの値をすべて求めよ。

2022立教大学経済学部過去問
この動画を見る 

引っかけ問題!? 円 斜線部の面積を求めよ 慶應義塾

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
半径$\sqrt 2$の円
斜線部の面積は?
*図は動画内参照

慶應義塾高等学校
この動画を見る 

数学「大学入試良問集」【2−4 剰余の定理•商と余り】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#鹿児島大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)
$x$の整式$p(x)$を$x-3$で割った余りは$2,(x-2)^2$で割った余りは$x+1$である。
$p(x)$を$(x-2)^2$で割った商は$q(x)$とするとき、$q(x)$を$x-3$で割った余りを求めよ。

(2)
$p(x)$は(1)と同じ条件を満たすものとする。
このとき、$xp(x)$を$(x-3)(x-2)^2$で割った余りを求めよ。
この動画を見る 

福田の数学〜千葉大学2022年理系第7問〜不定方程式の自然数解と漸化式で与えられた数列

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$x,y$についての方程式
$x^2-6xy+y^2=9  \ldots\ldots(*)$
に関する次の問いに答えよ。
(1)$x,y$がともに正の整数であるような(*)の解のうち、yが最小であるものを
求めよ。
(2)数列$a_1,a_2,a_3,\ldots$が漸化式
$a_{n+2}-6a_{n+1}+a_n=0  (n=1,2,3,\ldots)$
を満たすとする。このとき、$(x,y)=(a_{n+1},a_n)$が(*)を満たすならば、
$(x,y)=(a_{n+2},a_{n+1})$も(*)を満たすことを示せ。
(3)(*)の整数解(x,y)は無数に存在することを示せ。

2022千葉大学理系過去問
この動画を見る 
PAGE TOP