大学入試問題#594「解法が見えると計算に萎えそう」 南山大学(2019) #定積分 - 質問解決D.B.(データベース)

大学入試問題#594「解法が見えると計算に萎えそう」 南山大学(2019) #定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} (\cos^3\theta\sin\theta)e^{-\cos\theta}d\theta$

出典:2019年南山大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#南山大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} (\cos^3\theta\sin\theta)e^{-\cos\theta}d\theta$

出典:2019年南山大学 入試問題
投稿日:2023.07.20

<関連動画>

#福島大学2024#定積分_31#元高校教員

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{24}} \sin x\cos x\cos 2x dx$

出典:2024年福島大学
この動画を見る 

大学入試問題#340「とりあえず絶対値はずそ」 日本大学医学部(2010) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#日本大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{6}}^{\frac{4}{3}\pi} |\sqrt{ 3 }\cos\ x-\sin\ x| dx$

出典:2010年日本大学医学部 入試問題
この動画を見る 

福田の数学〜慶應義塾大学2023年理工学部第4問〜定積分と不等式Part2

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#数列の極限#定積分#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ (1)0≦$x$≦$\displaystyle\frac{\pi}{2}$において常に不等式|$b$|≦|$b$+1-$b\cos x$|が成り立つような実数$b$の値の範囲は$\boxed{\ \ シ\ \ }$≦$b$≦$\boxed{\ \ ス\ \ }$である。
以下、$b$を$\boxed{\ \ シ\ \ }$≦$b$≦$\boxed{\ \ ス\ \ }$を満たす0でない実数とし、数列$\left\{a_n\right\}$を
$a_n$=$\displaystyle\int_0^{\frac{\pi}{2}}\frac{\sin x(\cos x)^{n-1}}{(b+1-b\cos x)^n}dx$ (n=1,2,3,...)で定義する。
(2)$\displaystyle\lim_{n \to \infty}b^na_n$=0 が成り立つことを証明しなさい。
(3)$a_1$=$\boxed{\ \ セ\ \ }$である。
(4)$a_{n+1}$を$a_n$,$n$,$b$を用いて表すと$a_{n+1}$=$\boxed{\ \ ソ\ \ }$となる。
(5)$\displaystyle\lim_{n \to \infty}\left\{\frac{1}{1・2}-\frac{1}{2・2^2}+\frac{1}{3・2^3}-...+\frac{(-1)^{n+1}}{n・2^n}\right\}$=$\boxed{\ \ タ\ \ }$である。
この動画を見る 

大学入試問題#216 宮崎大学(2017) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{3}}^{\frac{\pi}{2}}\cos^2(3x+\displaystyle \frac{\pi}{6})dx$を計算せよ。

出典:2017年宮崎大学 入試問題
この動画を見る 

【高校数学】毎日積分19日目【難易度:★★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^1\sqrt{x^2+1}dx$
これを解け.
この動画を見る 
PAGE TOP