15奈良県教員採用試験(数学:高校3番 軌跡) - 質問解決D.B.(データベース)

15奈良県教員採用試験(数学:高校3番 軌跡)

問題文全文(内容文):
3⃣ P(0,a),$y=\frac{x^2}{a}$上の点をQ,
PQは最小値をとる(a≠0)
(1)Qの座標を求めよ。
(2)Qの軌跡を求めよ。
単元: #数Ⅱ#図形と方程式#軌跡と領域#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
3⃣ P(0,a),$y=\frac{x^2}{a}$上の点をQ,
PQは最小値をとる(a≠0)
(1)Qの座標を求めよ。
(2)Qの軌跡を求めよ。
投稿日:2020.08.12

<関連動画>

14奈良県教員採用試験(数学:2番 式変形)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
2⃣x=1-y-z
$x^2=1+yz$
(1)$x^3+y^3+z^3$をxで表せ
(2)xの範囲を求めよ。
(3)$x^3+y^3+z^3$の最大値を求めよ。
この動画を見る 

18愛知県教員採用試験(数学:7番 三角関数)

アイキャッチ画像
単元: #数Ⅱ#三角関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{7}$
$0\leqq \theta \leqq \dfrac{\pi}{2}$
$y=6\ \sin\theta\ \cos\theta+8\cos^2\theta-4$
の最大値,最小値を求めよ.
この動画を見る 

11岡山県教員採用試験(数学:1-(6) 微分方程式)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(6)$

$y\dfrac{dy}{dx}=y^2+1$
の一般解を求めよ.
この動画を見る 

11大阪府教員採用試験(数学:1番 接線と恒等式)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#接線と法線・平均値の定理#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}$ $a\in IR$とする.

放物線$y=x^2-2(a+1)x+a^2+4a$は
$a$の値によらず一定の直線$\ell$に接する.
この$\ell$の方程式を求めよ.
この動画を見る 

07大阪府教員採用試験(数学:3番 微分積分)

アイキャッチ画像
単元: #その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}$
$c:f(x)=\dfrac{\log x}{x}$

原点から曲線$c$に引いた接線を$\ell$とする.
曲線$c$,直線$\ell$,$x$軸で囲まれた面積$S$を求めよ.
この動画を見る 
PAGE TOP